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ERRATA for    Chaps. 2,    3,    and    4    of   the    present    book 

(CTR   Monographs   1,   Mayl997,   2,   Mayl998,   and   3, 
September  1999) 

(see also Errata in Chap. 3, pp.iv-v,    and Chap. 4, p.v) 

CHAPTER 2 

p.74, line 7 fb: "Eq. (2.41)" should read "Eqs. (2.40) and (2.41)". 

p.78, line  13: The point at the line beginning must be deleted. 

p.132, line 7: "[-8p/dx]"   should read "[-dp/dx]". 

p. 144, line  10 fb:  "Matsudera" should read "Mitsudera". 

p.144, line 7 fb: "248" should read "276". 

p.147, line 13: "149" shold read "148". 

p. 152, line 6 fb:    "22" should read "222". 

p.157, line    5 fb: "278" should read "288". 

p.158, line 9 fb: "(in Russian)." should read: 

"(Engl. transl. in the Appendix to the book: Markus, A.S., 
Introduction  to  the  Spectral  Theory  of Polynomial  Operator 
Pencils, Amer. Math. Soc, Providence, R.I., 1988).". 

CHAPTER 3 

p.iii, lines 2 and 9 fb: "ii" should read "i"; "75" should read "76". 

p.25, line 8: "it was   it was" should read "it was". 

p.30, line 3 fb:  "v" shold read  "w". 

p.33, line 17: ".." should read ".". 

p.52, Eq. (3.41): "w(x,0" should read "Wj(x,0". 

p.54, line 17 fb: "Ri" should read "Re". 

p.57, line  14 fb: "Gustavsson and Hultgren" should read "Gustavsson, 
and  Hultgren". 

p.59, Eq. (3.52): "+ütf " shold read "-«?". 

p.67, line 5 fb: "Sec. 3.2)" should read "Sec. 3.22)". 

p.92, line 8 fb: "p. 64" should read "p. 65". 



P.lll, lines 2 fb and 1 fb: the words "which will be considered at 
greater' length in Chap.4"  should be deleted. 

p.118, line 23 fb: "Kato (1976)" should read "Kato (1976, 1982)". 

p.122, lines 16 and 18: "4" and "5" should read "A 4" and "A 5". 

p.123, line  15:  ""natinstability"  should read "nature of instability". 

CHAPTER 4 

p.ii, line 14: "Dordschner"    should read "Dorschner". 

p.iii, lines 17 and 18: "AND   AND"   should read "AND". 

p.l, line  11:  "inadmissible"  should read "physically unjustified". 

p.32, line 10 fb, and p.48, line 12 fb: "Galdy" should read "Galdi". 

p.47, line 7 fb: "(1974)' should read "(1976)". 

p.48, line 12 fb: "Galdy" should read 'Galdi". 

p.48, lines  12-f fb. Here the papers by Galdi and Straughan (1985a), 
Mulone and Rionero (1989), Galdi and Padula (1990), and the 
book by  Straughan (1992)  are cited in which the method of a 
generalized  Lyapunov  functional  was  applied  to  the  Benard 
convection in the rotating fluid layer bounded by  two  free 
surfaces. However, recently in the paper by R. Kaiser and L.X. 
Xu "Nonlinear stability of the rotating    Benard problem, the 
case    Pr = 1", Nonlinear Diff. Eqs. and AppL, 5, 283-307 
(1998) it was shown that just in the case of this rotating 
Benard problem Lyapunov's   generalized  energy  functionals 
used in the mentioned papers and book are unapplicable at Pr 
= 1  since one nonzero term was missing in all used energy- 
balance equations. Therefore Kaiser and Xu proposed 
another form of the energy functional which led to results 
differing  from the previous  ones. 

p.69, line 9 fb: "Stewart" should read "Stuart". 

p.72, line  15 fb:  "Eherenstein" should read "Ehrenstein". 

p.83, line 19:    "Davies" should read "Davis". 

p.91, line 23: "Cherhabily" should read 'Cherhabili". 

p.173, line  10:  "T173-T174."  should read:  "T173-T174; (1991) 
Numerical analysis of secondary and tertiary states of fluid 
flow and their stability properties, Appl. Sei. Res., 48, 341- 
351." 



p. 176, line 13 fb: "AN' should read "Akad. Nauk". 

p. 179, lines 4 and 10 fb: "George"    and "Threshhold" should read: 
"Georg"    and "Threshold". 

p. 180, line  13 fb:  "structure"  should read "structures". 

p. 184,  line 2 fb:  "Wiederstandes"  should read "Widerstandes". 

p.186, line 2: "Tngng." should read   "Engng." 

p. 187, line 5 fb: "Ormihres" should read "Ormieres". 

p.188, line 17: "der Einfluss"    should read "den Einfluss". 

p. 204, line 4: "dimesional"    should read "dimensional". 

p.204, line  19:  "dimemsional"  should read "dimensional". 

p.218, line 8 fb: "(1994)"    should read "(1993)". 



CHAPTER 5.   FURTHER WEAKLY-NONLINEAR APPROACHES TO 
LAMINAR-FLOW STABILITY:  BLASIUS BOUNDARY-LAYER 

FLOW AS A PARADIGM 

Landau's equation and its generalizations considered in Sec. 4.2 
represent a particular weakly-nonlinear approach to the study of 
flow stability, based on the assumption that the disturbance 
amplitude A is small enough to justify the expansion of solutions of 
fluid-dynamic equations in powers of A. However this approach has 
a severe limitation: here the evolution of only one isolated mode of 
disturbance is traced while its interaction with all other modes is 
only roughly characterized by the values of real or complex Landau's 
constants  of various  orders. 

A comprehensive nonlinear theory of hydrodynamic stability 
must include a more direct description of interdependencies between 
disturbance modes. The complexity of the problem does not permit a 
universal analytical treatment. However, there is a vast number of 
approximate methods applicable to one or another particular case. 
Recall in this respect that some such approximate methods have 
already been briefly mentioned in Sec. 4.2 when the papers by 
Benney and Lin (1960), Benney (1961, 1964), Stuart (1962a,b), Ito 
(1980), and Danaila et al. (1998) were cited. In these papers the 
simultaneous development of two or more modes of disturbance was 
considered and therefore, instead of one Landau's equation, more 
general systems of differential equations for amplitudes of these 
modes were used [a typical example of such a system is given by Eqs. 
(4.43)]. However, in Sec. 4.2 no details and/or applications of these 
multimode   analyses   were   presented. 

In contrast to this, in the present chapter and the next some 
approximate methods for the study of multimode weakly-nonlinear 
flow instabilities will be considered at greater length, together with a 
number of applications of these stability theories to development of 
disturbances in some steady laminar flows of great practical 
importance. However, since the amount of material relating to this 
subject accumulated up to now is really enormous, a rather strict 
selection of topics was necessary here, and even then it has been 
impossible to include in the present chapter an adequate description 
of results of weakly-nonlinear instability theory for a wide range of 
laminar flows. Therefore, at first only results relating to one such 
flow will be considered at full length, but this will allow us to shorten 
considerably the presentation of similar results for other flows. As to 
the choice of the primary example, it was made easy by the quite 
exceptional    place    occupied    in   fluid    mechanics     by    the    Blasius 



boundary layer growing on a flat plate aligned with a parallel flow 
with constant velocity U0 (and hence with zero pressure gradient). 
This model laminar flow is quite a good approximation to many flows 
met in nature and in engineering facilities, which makes it one of the 
most important laminar flows. Moreover, this flow has a rather 
simple structure, and it has been carefully studied by a number of 
outstanding scientists who obtained many interesting results about 
it, often directly relating to weakly-nonlinear stability. Note also that 
these results show very convincingly that in the case of the Blasius 
boundary layer the multimode type of instability plays an especially 
important part, and in fact determines the development of 
disturbances leading to transition of this flow to turbulence. 
Therefore it seems natural to devote the present chapter entirely to 
the study of weakly-nonlinear multimode instability of the Blasius 
boundary layer flow and only after this to consider some other 
laminar  flows. 

5.1.   RESONANCE MECHANISMS OF WAVE-DISTURBANCE GROWTH; 
TWO-WAVE AND THREE-WAVE RESONANCES 

In physics the term 'resonance' is most often used to describe 
the rapid growth of the amplitude of a steady-state periodic 
oscillation of a physical system affected by an external oscillating 
force when the frequency of the force oscillations approaches the 
fundamental frequency of the system considered (or one of these 
frequencies if there are many of them). The same term was also met 
in Sec. 3.32 of this book where, however, it had a slightly different 
meaning - there, the growth of flow disturbances produced by the 
degeneracy of the system of eigenfrequencies of the linear stability 
problem was called the 'resonance growth'. It was explained in Sec. 
3.32 why the word 'resonance' is appropriate here - if there are two 
eigenfrequencies taking the same value co0 and both the 
corresponding flow oscillations are excited, then either of them may 
be considered as a force affecting the other and producing resonance 
growth of the oscillation amplitude. Since in Sec. 3.32 only the linear 
stability theory, dealing with disturbances of exceptionally small 
amplitude, was considered, resonance conditions were there 
formulated in terms of eigenvalues of linearized wave equations and 
no attempts to evaluate the resonance growth of amplitudes were 
made. However, a more general formulation states that the 
'resonance mechanism of disturbance growth' means that there are 
several modes of disturbance such that their interactions efficiently 
excite   some    (or   all)   of   them    leading    to   rapid    increase    of   the 



corresponding amplitudes. According to this formulation, a resonance 
mechanism includes reciprocal interactions among two or even more 
modes, and hence it cannot be studied in the framework of the one- 
mode Landau weakly-nonlinear theory. However the general 
weakly-nonlinear approach, based on the assumption that initial 
amplitudes of all disturbances considered are small (but not 
infinitesimal) can be used here too. This section will be devoted 
entirely to weakly-nonlinear theory of resonances and other 
intermode  interactions   appearing  in  fluid  flows. 

In Sec. 3.32 we considered only the particular two-wave 
resonances which are due to the coincidence of the frequencies of 
two wave modes of infinitesimal disturbance and lead to power-law 
growth of amplitudes of these modes. It was explained there that 
such resonances are rather numerous, and can occur for both two- 
dimensional (2D) and three-dimensional (3D) wave disturbances of 
steady plane-parallel or axisymmetric-parallel flows. The use of the 
adjective 'infinitesimal' means that in Sec. 3.32 only linearized 
equations of motion were considered, and hence all the resonances 
studied were of the elementary linear type. [The possible importance 
of nonlinear resonance effects was mentioned only once, on p. 70 of 
Chap. 3, with reference to the paper by Benney and Gustavsson 
(1981) but was not discussed there.] At the end of Sec. 3.32 it was 
also stressed that the resonance growth rates of amplitudes found in 
all the papers discussed were much smaller than the growth rates of 
disturbances observed in the available laboratory experiments and 
numerical simulations. This discrepancy clearly shows that there are 
some other growth mechanisms, more efficient than the linear 
resonance   mechanism. 

Let us now consider a more complicated situation relating to 
the manifestation of resonances in nonlinear physical systems 
(exemplified by a viscous fluid flow consisting of a steady primary 
flow with a finite disturbance superimposed on it). Note, first of all, 
that the nonlinear resonance is much more versatile than the linear 
one. In the simplest case of a one-dimensional oscillation u(t) the 
quadratic term (<*= u2) of the oscillation equation leads to the 
appearance, in addition to the harmonic oscillation of fundamental 
angular frequency (o0, of the second harmonic proportional to 
exp(2/G)0r); therefore the system may resonate here also if the 
external force has a frequency close to 2co0. Higher harmonics 
exp(kico0t), k = 3, 4, ..., also appear in many nonlinear systems 
together with the primary oscillation. In general, the response of a 
nonlinear system  to  a sinusoidal  external   disturbance   may be highly 



nontrivial and lead to exceedingly complicated behavior; see, e.g., 
Chirikov's survey (1979), Sees. 3 and 4, and the book by Rabinovich 
and Trubetskov (1989), Chap. 13. In particular, the phase space of a 
nonlinear system, even a one-dimensional one, can include a number 
of different resonance bands which can overlap, complicating the 
situation considerably. However this topic will not be considered in 
this book where the main attention will be paid to other aspects of 
the   nonlinear  resonance. 

The possibility of nonlinear resonance produced by the 
interaction of a primary oscillation of a frequency co0 with an 
external force of double frequency 2co0 (or of frequency kco0, k >2) 
means that in a nonlinear system the simultaneous appearance of 
two oscillations with frequencies (OQ and kcoo, where k is an integer, 
may also sometimes produce rapid amplitude growth. From this one 
may deduce that, for example, in a two-dimensional steady fluid flow 
the interaction of a pair of two-dimensional Tollmien-Schlichting (T- 
S) waves of finite amplitude can lead to resonance not only in the 
case considered in Sec. 3.32, where both waves have the same 
frequency COQ (i.e., COQ is a degeneracy point of the corresponding 
eigenvalue spectrum), but also in cases where these two T-S waves 
have frequencies a>o and kcoo where k is an integer. A similar 
increase in the number of possible resonance effects is produced b y 
the nonlinearity of the equations of motion when three-dimensional 
(3D) wave disturbances are considered instead of simple two- 
dimensional T-S waves. (Such 3D resonances were also analyzed in 
Sec. 3.32, in the framework of the linear stability theory.) We see 
that in the case of wave disturbances of finite amplitude there are 
many more possibilities for two-wave resonances than in the case of 
waves of infinitesimal amplitude. Moreover, since the product of 
harmonic oscillations of frequencies coi and co2 may be represented 
by a linear combination of two harmonic oscillations of frequencies 
(0\ + co2 and a>\ - 0)2, the interaction of two oscillations of frequencies 
co\ and co2 in a nonlinear system may cause a 'resonance growth' of a 
third oscillation of frequency co\ + a>2 (or «i - co2), if such an oscillation 
is also present. In other words, the nonlinear resonance may be 
produced in a nonlinear system with quadratic nonlinearities by a 
triad of small (but finite) harmonic oscillations with frequencies co\, 
co2, and 0)3 (which can be incommensurable with each other) such 
that 

0)1 + &>2 + CO3  =0 (5.1) 



for some choice of the signs of the frequencies considered (the sign of 
the frequency of a sinusoidal oscillation may be equally correctly 
considered as being positive or negative). Similarly, nonlinear 
resonances may also be produced by rc-tuples of harmonic 
disturbances, where n > 3, with frequencies cou Oh, ... , o>n of any signs 
whose sum is equal to zero. Note however that condition (5.1) and 
the other frequency relations indicated above imply only the 
possibility of resonance but are not sufficient for its occurrence. In 
practice the emergence of a resonance and the rate of the 
corresponding resonance growth of amplitude depend on the general 
structure of the nonlinear system considered, and on numerical 
values of its characteristics. Note also that in the cases of 
exponentially growing or decaying harmonic oscillations the 
variables co in Eq. (5.1) designate the real physical frequencies - as 
in the many other relations dealing with exponentially growing or 
decaying oscillations which we will meet below. [Thus, for T-S waves 
corresponding to points of the (fc,Re)-plane away from the neutral 
curve the symbol co will as a rule designate the real part, a>(r) = Sieco, 
of the complex eigenvalue co of the Orr-Sommerfeld eigenvalue 
problem. As to the imaginary parts co{i) = Smco, they determine 
exponential factors exp(-©(l)0 which will usually be included in the 
corresponding amplitudes A(t).] Moreover, if one takes it that the 
frequencies are positive by definition, then the + signs in Eq. (5.1) 
and the similar relations must, of course, be replaced by    ±   signs. 

Above, only the case of a one-dimensional oscillation u{t) 
satisfying some nonlinear ordinary differential equation was 
considered (although wave disturbances depending on spatial 
coordinates were sometimes mentioned as examples). Let us now 
discuss the case of oscillations relating to fluid mechanics at slightly 
greater length. Here the oscillating disturbances always have the 
form of vector fields b(x,f) = {u(x,t), v(x,t), w(x,t), p{x,t)} (where u, 
v, w, and p are the three velocity components and pressure) 
depending on time t and coordinates {x, y, z} = x and satisfying the 
Navier-Stokes (N-S) partial differential equations. In such a case the 
study of resonance conditions and of possible types of resonance 
effect represents a complicated problem, where it is difficult to 
expect that practically useful results can be found for general 
disturbances. A very important particular class of disturbances, 
which played the central part in Chaps. 2 and 3 of this book (and has 
already   been   mentioned   occasionally   in the   present   section   too),   is 



the class of wave disturbances of the form b(x,f) = A(t)Bel(kx wt) 

(where B = {U, V, W, P} is a constant vector, and A(t) is the 
amplitude, which is slowly changing with t) or some other related 
wave form. Therefore, it is natural to suppose that investigation of 
the nonlinear wave resonance must represent an important part of 
the nonlinear stability theory. The remark above about 'other 
related wave forms' stressed that in some cases it is convenient to 
consider only one- or two-dimensional waves, where the three- 
dimensional 'spatial wave factor' elkx is replaced by e'kx or e'{klX+kiy), 
and the vector B may depend on spatial coordinates not entering the 
given exponents. [In the spatial formulation of the problem of 
hydrodynamic stability the amplitude A is assumed to be 
dependent, not on t but on the spatial coordinate or coordinates 
(most often, on the streamwise coordinate x). In some cases it is also 
reasonable to assume that A = A(x,t) is a slowly varying function of 
both the time and spatial coordinates; see, e.g., the discussion of the 
corresponding one-mode stability problems in Sec. 4.22 and 4.24(b) 
and of the three-wave resonances of waves with amplitudes A(x,t) in 
Craik (1985), Chap. 5]. As to the four-dimensional vector b = {u, v, w, 
p}, in the case of a plane-parallel flow of incompressible fluid it may 
often be replaced by the two-dimensional vector w = {w, Q (where 
w is the vertical velocity and £=£3 is the. vertical vorticity; see., e.g., 
Sec. 3.33), while in the case where only two-dimensional wave 
disturbances are studied it is enough to consider only the scalar 
stream-function field y/ = y/(x,z,t) (a similar change of arguments must 
then be applied also to  the  vector  B).    For the  sake  of simplicity,   w e 

will first consider scalar waves of the form u(x,t) = A(t)Uel<kx ~ m> (or 
of the related one- and two-dimensional forms) representing one 
component   of the   vector   b(x,f), and   only   later   wil1   Pass   t0  more 

general vector waves. Let u(x,t) = A(t)Uel(kx ~ at) be a wave of small 
enough amplitude which satisfies some nonlinear wave-propagation 
equation including a nonlinear quadratic term. A very important 
particular case is that in which (k, co) are the eigenvalues of the 
corresponding linearized equation (i.e., where co is the 
eigenfrequency of the eigenvalue problem corresponding to a given 
value k of the wave vector or, if spatial disturbance development in 
a plane-parallel flow is studied, the streamwise component kx of the 
vector k = {kuk2} is the eigenvalue corresponding to given values of a 
and of k2 or k2/k{). In this case the nonlinear equation may be used 
for   approximate    evaluation    of  the   effect   of  nonlinearity    on   the 



evolution of an initially very small (practically infinitesimal) wave 
disturbance. • Quadratic nonlinearity entering the equation will 
produce a term proportional to exp[2i{kx -cot)], representing a wave 
with doubled frequency and wave number. As a rule the values (2k, 
2co) will not be the eigenvalues of the linearized problem; then the 
nonlinear equation for the amplitude A(t) will be reducible to an 
equation of Landau's type considered in Sec. 4.2. However, in some 
exceptional cases both (k, co) and (2k, 2co) will be eigenvalues of a 
linearized problem  and  here  the resonance   effect may take  place. In 

fact, in this case a very small wave proportional to e2l<kx mt> may be 
generated in the flow by background "noise" (including turbulence 
and not only acoustic waves) of environmental origin and then its 
interaction with the square of the first wave disturbance produced 
by quadratic nonlinearity of the wave equation will lead to the 
resonance growth of disturbance component with doubled frequency 
and wave number. Thus, in the case of finite disturbances a two- 
wave resonance may be possible in a fluid flow if there is an 
eigenvalue (k, co) of the linearized equation of motion such that (2k, 
2co) is also an eigenvalue. [Of course, resonance may also be possible 
if (k, co) and (Ik, Ico), where / is an integer exceeding 2, are linear 
eigenvalues. However, this is a higher-order resonance where growth 
terms are proportional to higher powers of small initial amplitudes 
and it will be not considered in this book.] 

The condition printed above in italics is valid quite 
infrequently. However, three-wave resonances may also occur in 
fluid flows, and the conditions making such a resonance possible can 
often be satisfied more easily than conditions for the two-wave 
resonance. Suppose that (ki, &>i) and (k2, co2) are both eigenvalues of 
the linearized equation, determining the infinitesimal wave modes of 
a disturbance. Then the waves with wave-vectors kx and k2 and 
angular frequencies co\ and co2 may be simultaneously excited and 
their interaction (described by the part of the nonlinear term 
proportional to the product of two waves) will generate waves with 
wave vectors and frequencies (k3, co3) = (ki+k2, coi+coi) and (k4, co4) - 
(kt-k2, co\-co2). The arguments which were summarized above for the 
case of harmonic oscillations in a nonlinear system [and led to Eq. 
(5.1)] now show that in the case of waves of small (but not 
infinitesimal) amplitudes satisfying a quadratically nonlinear wave 
equation, the three-wave nonlinear resonance may occur if together 
with the waves with wave number and frequency values {k\,cox) and 
(k2,to2), a third  wave  is present   which has the   same   (x,0-periodicity 



as one of the waves produced by nonlinear interaction of the above- 
mentioned waves, i.e., if (k3, o)3) = (ki+k2, 0)1+0)2) [or (ki-k2, 0)1-0)2)]. 
Hence here the conditions making the resonance possible may be 
written in  the  form 

ö)i + ö)2 + ö)3=0,   ki + k2 + k3 = 0, (5.2) 

where it is assumed that signs of the frequencies and wave vectors 
can be chosen arbitrarily [if this assumption is not accepted, then Eq. 
(4.2) must be written in the form 

0)1 ± 0)2 = 0)3,   ki±k2 = k3; (5.2a) 

see, e.g., Phillips (1960, 1974a,b)]. Phillips assumed that the three 
waves considered have small amplitudes A^t), i = 1, 2, 3, of the same 
order of magnitude, and, substituting the sum of three waves into 
the nonlinear wave-propagation equation (whose form depends upon 
the nature of the waves considered), he obtained for the case of 
three  real  (sinusoidal)   steady  waves  satisfying  the  conditions 

0)1 + 0)2 = 0)3,      ki+k2 = k3 (5.2b) 

the following approximate equations determining, to the order of the 
squares of the initial amplitudes, the rates of change of the three 
amplitudes: 

^ = W,    ^ = C2A3A,    ^ = C3AA, (5.3) 
dt at at 

where Ch C2 and C3 are three interaction coefficients dependent on 
the particular wave motion considered, and on the wavenumbers 
involved and their geometrical configuration. [For more details see 
the paper by Bretherton (1964), the book by Craik (1985) specially 
devoted to wave interactions in fluid flows, and the papers and 
books cited below in this section, many of which contain rigorous 
derivations of these equations for a number of particular cases.] 
Craik considered the complex wave disturbances in a plane-parallel 
fluid flow where the amplitudes Au A2 and A3, and also the 
frequencies cou co2 and co3, may be complex (as they are, e. g., in the 
case of unsteady T-S waves). Here the first condition (5.2b) takes the 
form SRe(ü>i + 0)2) = ^eo)3 (while the second does not change), and Eqs. 
(5.3) take the form: 



^ = <Äi + CA*A3,   ^ = ^% + C2A;A3,   ^^(ofA^C^A,, (5.4) 
dt dt dt 

where af = 3mo)B, n = 1,2,3, and the asterisk denotes a complex 
conjugate. In the case of a spatial formulation of the parallel-flow 
stability problem the frequencies coh co2 and co2 take real values but 
the streamwise components, ku,klx and k3l, of the vectors ki, k2 and 
k3 may be complex. Therefore in this case the first condition (5.2b) 
remains unchanged, while the second condition must be replaced by 
equation SRe(ki + k2) = 9*ek3 (where the symbol 91 e relates only to the 
streamwise components of the wave vectors), and Eqs. (5.4) must be 
written   as 

^ = -^A1 + 5A*A3,    ^ = -k^A2+B2A;A2,    ^ = -k^A, + B,A,A2, (5.4a) 
dx dx ax 

where      k™ = 3m*fll, n = 1,2,3,    and     the Bn    are     new     interaction 
coefficients. Note also that, as in the case of complex frequencies, the 
superscript (r) in the symbols for the real parts of streamwise wave 
vectors representing exponentially growing or decaying waves will 
often be omitted, and the real parts will be denoted by symbol kx (or 
A;, if the wave is two-dimensional). 

Eqs. (5.4) and (5.4a) represent the nonlinear approximation of 
lowest order in the weakly-nonlinear stability theory. In the 
approximation of the next order with respect to wave amplitudes, 
additional third-order terms appear on the right-hand sides of Eqs. 
(5.4) and (5.4a); see e.g. Eqs. (5.11) below, the papers by Usher and 
Craik (1975) and Goncharov (1981), and the book by Craik (1985), 
Sees. 16.3 and 25-26. The quadratic terms of amplitude equations 
characterize only resonant modes, while for the more usual 
nonresonant modes cubic terms follow the linear ones; see, e.g., 
Landau-Stuart's Eq. (4.40) and Stuart's Eqs. (4.43). Presence of 
quadratic terms clearly means that for resonant modes nonlinearity 
begins to be important 'sooner' (i.e., at smaller amplitudes) than for 
nonresonant   modes. 

The computation of the interaction coefficients C\, C2 and C3 is a 
complicated problem, for which a number of special methods 
(applicable to one or other particular wave-interaction situation) 
have been developed (see e.g. the important early paper by Simmons 
(1969) and the discussion of this topic in Craik's book). The problem 
is significantly complicated by the fact that real physical media are 
very  often dispersive.   This means   that  the   wavenumber    k and  the 



frequency co of waves in the medium cannot be chosen arbitrarily 
but must satisfy a definite dispersion   relation 

co = D(k), (5.5) 

where the function D(k) (one- or many-valued) may depend on 
physical parameters affecting wave propagation and on the 
dimensionless characteristics of the corresponding physical regime 
[e.g., on the Reynolds number; see e.g. Eq. (2.90) in Chap. 2 and, for 
more details, Karpman's monograph (1975)]. Therefore in many cases 
it is not easy to find triads of wave vectors k; and frequencies cot 

satisfying both Eqs. (5.2b) (or a related equation differing by the 
signs of some terms and/or by replacement of co, by 9tea>;) and (5.5), 
since such triads (if they exist) represent only some infrequent 
exceptions. In particular, Phillips (1960, 1961) who was one of the 
first to look for nonlinear wave resonances in fluid flows, studied 
inviscid gravity waves in deep water (where k is a two-dimensional 
vector and the dispersion relation has the form co = g\k\, g is the 
acceleration due to gravity). He found that here the condition (5.2b) 
cannot be fulfilled at all (note that such a dispersion relation 
evidently prevents two-wave resonance also). Hence Phillips was 
forced to pass to four-wave resonances of quadruples of waves 
satisfying the conditions ki + k2 = k3 + k4, co\ + co2 = co3 + co4. He found 
that such quadruples of gravity waves really exist, and hence the 
four-wave resonances may occur here and produce unsteadiness of 
the gravity waves. Then he determined the corresponding amplitude 
equations which, in the case of four-wave resonance contain, in the 
lowest-order nontrivial approximation, terms of third order in wave 
amplitudes on the right-hand sides; see also Craik (1985), Sees. 8 and 
23. In some plasma and geophysical wave problems the five-wave 
resonances produced by a coupled pair of resonant wave triads 
having one member in common are also of importance; such 
resonances are discussed in Craik (1985), Sec. 16.2, while for 
examples of resonances of this type appearing in fluid flows see, e.g., 
the small-type text in the final part of Sec. 5.3 in this chapter). As to 
three-wave resonances, they may be important in many physical 
situations (the case of gravity waves on a deep-water surface may be 
considered as an exception) and therefore the literature devoted to 
study of such resonances is quite extensive. In particular, it was 
found by McGoldrick (1965) that such resonances may occur in the 
case of capillary-gravity waves and ripples on the water surface 
(which  are  affected  by both  the  gravity   and the  surface   tension   and 
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have  a dispersion   relation  of the form  co2 = glkl + yklVp, where   7  is 
the coefficient of surface  tension  and p   is the  density   of water).   In 
the case of gravity waves in a heavy liquid beneath   a solid plate,  the 
surface tension plays no role but here  the waves   are  affected  by the 
elastic  properties   of the plate,  and this leads  to a dispersion   relation 
which     again    makes     three-wave      resonance     possible;     see     e.g. 
Marchenko     (1991,     1999).    It    was    also    found    that    three-wave 
resonances    may   occur   among   effectively-inviscid    internal    gravity 
waves   in  stratified    flows   with   density    depending    on   the   vertical 
coordinate;   among   various   large-scale   geophysical   waves   (e.g. those 
depending   on Earth's angular  velocity,   such  as Rossby  waves   in the 
troposphere    and  plasma   waves   in the   ionosphere   at much   greater 
heights);      and   among   many   other   types    of  interacting    nonlinear 
waves.  Note also that  the  three-wave    resonance   may   be realized   in 
triads   of waves   of different   types   (in particular,   in triads   consisting 
of two  gravity   waves   on the   surface   of a  stratified   liquid   and   one 
internal   wave   in the   same   liquid,   or of two   short   capillary-gravity 
waves   and   one  longer   purely-gravity    wave   unaffected   by   surface 
tension). A number of theoretical   and experimental   studies   of three- 
wave    resonances     in   fluid    flows    may    be    found    in   papers    by 
McGoldrick (1965,   1970a,b,   1972),  McGoldrick et al. (1966),   Phillips 
(1966,    1967,    1974a,b,    1977,    1981),    Longuet-Higgins    and    Smith 
(1966), Longuet-Higgins and Gill (1967), Craik (1968), Nayfeh (1971), 
Brekhovskikh   et al. (1972),   Loesch   (1974),   Ripa  (1981),   Bannerjee 
and Korpel (1982),   Yuen and Lake (1982),   Hogan (1984),   Henderson 
and Hammack  (1987),   Perlin   et al. (1990),   Christodoulides   and  Dias 
(1994), Trulsen and Mei  (1996)  and many others.  [These  publications 
and   the   book   by   Craik   (1985)    also   contain   many   supplementary 
references   relating   to this   topic]   Since  nonlinear   dispersive   waves 
may   occur   in   quite   different    media   and   situations,    the   nonlinear 
wave-resonance    theory   has  many   applications    to  problems    outside 
classical   fluid   mechanics;   in  such   cases   the   theory   has   often   been 
developed   independently   of studies   of waves   in ordinary   fluids.   As 
typical examples of publications  dealing  with three-wave   resonances 
relating   to waves   of other   origins,  we may  mention   the   papers   by 
Jurkus   and   Robson   (1960)    on  nonlinear    electronics,   by   Khokhlov 
(1961)      on     electromagnetic      wave      propagation      in     dispersive 
conductors,   and  by Dimant  (2000)   on nonlinear   interactions    among 
ionospheric waves; the books and papers by  Armstrong   et al. (1962), 
Bloembergen   (1965,   1968)   and  Akhmanov   and  Khokhlov   (1972)   on 
nonlinear    optics,   by   Davidson   (1972),    Weiland    and   Wilhelmsson 
(1977)    and   Turner   and   Boyd   (1978)   on   plasma    waves;    and   the 
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general survey by Kaup et al. (1979) [containing an extensive 
bibliography and supplemented by Kaup's paper (1981)]. However, 
in the framework of the present purposes only waves in an 
incompressible Navier-Stokes fluid are of interest, and in this 
chapter only the case of waves in nearly plane-parallel Blasius 
boundary-layer-flows   will   be   investigated. 

In almost all the papers and books cited above which deal with 
wave resonances in fluid mechanics, waves in immovable fluids 
(where there is no basic flow) were considered. In this case the total 
energy of any group of waves interacting with each other must be 
conserved. [This means, in particular, that if the wave energy E <* \A\ 
is always positive, the coefficients Q, i = 1, 2, 3, of Eqs. (5.3) cannot 
all have the same sign. More complicated cases, in which the 
excitation of waves lowers the total energy of the system so that the 
wave energy must be considered as negative, are often encountered 
in plasma physics, and have also been considered in application to 
fluid mechanics, e.g. by Cairns (1979), Craik and Adam (1979), and 
Craik (1985), Sees. 2.3 and 14.3; however, they will not be discussed 
in this book.] Energy conservation implies that the growth of one 
wave may be achieved only as a result of energy exchange between 
various waves, leading to energy redistribution and the attenuation 
of some other wave (or waves). Such energy redistribution changes 
the wave amplitudes (and also the wave shapes, which become 
distorted by the growth of supplementary waves extracting energy 
from the primary one) producing unsteadiness and hence making the 
waves unstable. Emerging unsteadiness of waves is often of 
oscillatory type [in which the energy of one of the waves decreases 
for a time because of transfer to other waves but then begins to 
grow anew when the energy transfer changes sign; see e.g. Fig. VII.3 
in Phillips (1974b)]. Such unsteadiness clearly represents an 
interesting physical phenomenon which differs strongly from the 
monotonic growth of disturbance amplitudes leading to transition of 
laminar flows to turbulence. If the viscosity of the fluid cannot be 
neglected, then the redistribution of energy between interacting 
waves will be accompanied by their viscous decay, but here too the 
growth of one wave amplitude must necessarily be accompanied by 
simultaneous   attenuation   of  others. 

The difference between the wave instabilities observed in 
immovable fluids and the flow instabilities studied in Chaps. 2-4 
above is due first of all to the fact that in these chapters only 
instabilities of steady laminar shear flows [most often of plane- 
parallel    flows   with   nonuniform    velocity    distributions     U(z)]  were 
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considered. In such flows the most important mechanism of 
disturbance growth is connected with the transfer of energy from the 
primary flow to the disturbance (reverse energy transfer is also 
possible in principle but it appears much more rarely). This 
mechanism plays the leading role in the majority of cases of 
transition to turbulence, and also in all the flow instabilities studied 
in Chaps. 2-4 (see in this respect Sec. 4.1 on the energetics of 
instability phenomena). Therefore it is natural to suppose that the 
same mechanism may have an essential effect on the resonant 
growth of wave disturbances in steady shear flows, and thus lead to 
some   new   interesting   and   important  instability  phenomena. 

Apparently Raetz (1959) [see also the discussion of this work 
by Stuart (1962a) and in Raetz's survey (1964)] was the first to 
suggest that three-wave nonlinear resonances may play an essential 
part in the transition to turbulence of a laminar boundary layer with, 
say, the Blasius velocity profile U(z). Shortly after this Benney and 
Niell (1962) expressed doubts about the possibility of a nonlinear 
resonance leading to a large growth of some wave amplitudes; 
however, later their doubt was found to be groundless [and the 
importance of nonlinear resonance was then stressed, in particular, 
by Benney and Gustavsson (1981)]. As will be shown below, the main 
idea of Raetz proved to be correct and very important; for this reason 
Raetz's unpublished report of 1959 stimulated the appearance of a 
great number of papers further developing this idea. This matter will 
be discussed at greater length in the next section; first, however, the 
results of two relatively old (but quite typical) papers relating to 
some special cases of nonlinear resonance of waves in shear flows 
will be briefly considered, as illustrations of the general tendency of 
nonlinear-resonance    studies. 

Kelly's paper (1968) was devoted to the search for resonant interactions 
of waves in two particular plane-parallel inviscid shear flows - in a Bickley 
jet, where U(z) = UQsech2(z/H) in -■*• <z <°°, and in a stably stratified plane 
mixing layer with the velocity profile U{z) = t/0tanh(z///)] and the density 
profile p(z) = p0exp[-ßtanh3(z///)]. In this paper only two-wave resonances, 
involving pairs of neutrally-stable two-dimensional waves, were considered. 
For waves proportional to exTp{i(kix-coit)}, j = 1, 2 (where ki and cos are real and 
positive), nonlinear resonance is possible if k2 = 2kx, co2 =2co:; it was found that 
to identify waves satisfying these conditions, the data collected by Drazin and 
Howard in their survey (1966) of stability of parallel flows in inviscid fluids 
are   very   useful. 

According to Drazin and Howard, a Bickley jet can support a pair of 
neutral two-dimensional waves with the following wave numbers and 
frequencies: k, = l/H, co, = (2/3)Uo/H, and k2=2/H; co2 = (4/3)U0/H (the 
stream-function     vertical    profiles    v'i(z)  and   Vi(z) of these    waves    were    also 
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given by Drazin and Howard). Thus, these two waves may interact resonantly. 
As for the stratified mixing layer, Miles (1963) showed that there can exist an 
infinite number of two-dimensional neutral modes depending on the value of 
the overall Richardson number Ri*= gßH/(U0)

2 (which characterizes the flow 
stability). Results given by Drazin and Howard show that at Ri* = 4/3 the 
resonance conditions k2 = 2kx, co2 =2cox are satisfied for the first two modes; 
while for Ri* > 4/3 other resonant cases may occur which also involve higher 
modes (in particular, at Ri* =10/3 a three-wave resonance may occur among 
the first three modes). Kelly studied the interactions of these pairs of two- 
dimensional waves in the Bickley jet and in the stratified mixing layer, and 
found that, at least in the stably stratified mixing layer at Ri* =4/3, two-wave 
resonance can occur, leading to the rapid temporal growth of a wave 
disturbance with a fixed spatial periodicity. This continuous growth shows that 
in this case the nonlinear interaction of the waves with each other and with 
the  primary   flow   leads   to   transfer  of     primary-flow  energy   to   the   waves. 

Slightly later Craik (1968) examined the possibility of resonant gravity- 
wave interactions in a horizontal liquid layer with the linear velocity profile 
U(z)= - uxz, 0 > z >-<». (The condition that \U(z)\ ->°° as z ->-<*> is not essential 
here, because the gravity-wave motions involve only a thin upper layer of 
liquid.) It was indicated above that the two-wave and three-wave resonant 
interactions cannot occur among gravity waves in a liquid at rest, while such 
interactions among quadruples of waves can occur here but cannot produce 
continuous growth of any of the waves. Craik found that in a shear flow with a 
linear velocity profile, two-wave and three-wave resonant interactions are 
also impossible among two-dimensional gravity waves, but three-wave 
resonant interactions are now possible among two- and three-dimensional 
gravity waves. He did not try to examine all possible resonant triads of such 
gravity waves but limited himself to consideration of triads comprising one 
two-dimensional wave proportional to exp[i(kx-cot)]), and two symmetric 
oblique   waves   which   are  proportional    to &xp[i(k,x ± k2y - (Ojt)] and  thus   have 

inclination angles 9U2 = +tan-1 (k2/kx), with the same absolute value but 
opposite signs. The frequencies co and cox and the wave numbers k, kx and k2 

were assumed to be real, i.e., all the waves considered were neutrally stable. 
However, these frequencies and wave vectors could not take arbitrary real 
values, but had to satisfy a definite dispersion relation. Craik showed that i n 
the homogeneous shear flow with constant shear ux, the frequency co and 
wave vector k = (kx, k2) of a gravity wave must satisfy a dispersion relation of 
the    form 

co2-(kxux/\k\)co = g\k\,   Ikl^k2 + k2
2)U2. (5.6) 

Relation (5.6) allows us to examine conditions under which a triad of 
waves with wave numbers and frequencies (k,, CO,), (k2, o>,) and (k3, co), where 
k, = (kx, k2), k2 =(&,, -k2) and k3 =(k, 0), may satisfy conditions (5.2b). Since 
co(kx,k2) = co{kx,-k2) by virtue of Eq. (5.6), these conditions now take the very 
simple   form: 

kx=kl2,     cox = co/2. (5.7) 

Thus the values of k, k2 and co must be chosen so that Eq. (5.6) will be 
valid for the following two wavevector-frequency combinations: i) (k, 0, co) 
and  ii)  (k/2,  k2, col2).  Assuming,   without   loss of generality,    that   k   and   co  are 
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positive,   Craik  showed   that   such   values   of k, k2 and   co     exist only   under   the 
condition   that   w,  is  also positive and so large that 

uxl(gk)V2>    [7 +(48)1/2]/[8   +(48)1/2],/2= 3.60. (5.8) 

This means that three-wave resonant interactions, which are 
completely impossible for gravity waves in a motionless liquid, may b e 
possible for such waves in a homogeneous shear flow for wave triads of 
special form, but only in the cases where the shear M, is positive and large 
enough. Craik also showed that, under condition (5.8), to every permissible 
value of uxl{gk)112 there correspond two permissible values of k2 >0 and of the 

angle 9 = tan-1 (2k2lk). Moreover, here the two values of 9 coincide with each 
other and are close to 74° when u^igk)112 takes its minimum permissible value 
(close to 3.6), while when the value of ux/(gk)u2 increases one of the two 
values of 9 is continuously growing and the other is continuously decreasing, 
tending  to   values  90°   and 60° as   ux/(gk)112 -»  °°. 

The subsequent part of Craik's paper is devoted to a lengthy 
approximate evaluation of the growth rates for triads of interacting plane 
waves satisfying the resonant conditions (5.2b). Assuming that the viscosity v 
is very small and that the initial complex amplitudes Ax(0), A2(0) and A3(Q) of 
the three surface gravity waves considered have small (but not infinitesimal) 
absolute values, Craik derived, under rather general conditions, a system of 
equations for the functions Ax(t), A2(t) and A3(f), of the form (5.4). Here the 
first terms on the right-hand sides (which describe the viscous decay of the 
waves) can usually be neglected, while for the leading terms of the 
expressions for the coefficients Ch i = 1, 2, 3, the following order-of-magnitude 
estimates were obtained: C, = O(co2/kv), C2 = O(co2/kv), but C3 = O(cok). It is 
remarkable that at small values of v (i.e. large Re) the coefficients C, and C2, 
determining the growth rates of amplitudes of the two oblique waves, turn out 
to be much greater than the coefficient C3. Hence here the oblique waves grow 
very rapidly, while the amplitude of the two-dimensional wave changes much 
more slowly. This shows that in this case a very strong resonant interaction of 
the three waves takes place, and the oblique waves effectively extract energy 
from the primary flow while the amplitude of the two-dimensional wave 
changes only a little. Of course, since these estimates of the wave growth rates 
were based on the assumption that all the amplitudes are small, the estimates 
are   valid   only   during   a   restricted   time   interval. 

In conclusion Craik briefly considered also the resonant-interaction 
problem for interfacial gravity waves in a two-layer flow where for z >0 and 
z <0 the liquid has different densities p, and p2 >p, and the flow has constant 
but different velocity gradients dll/dz = ux and u2. He found that here the 
condition for three-wave resonance can often be satisfied by much smaller 
values of the velocity gradients than those given by Eq. (5.8). However we 
will  not  linger  on  this   special  problem  in  this  book. 

5.2.    RESONANCE AND SECONDARY-INSTABILITY MANIFESTATION 
IN BOUNDARY-LAYER DEVELOPMENT 

The title of this chapter and the short introduction indicated 
that the chapter will be devoted   to weakly-nonlinear   mechanisms   of 
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instability development in a steady laminar boundary layer in zero 
pressure gradient (a "flat plate" boundary layer). Consideration of 
this flow alone was justified by the prevalence and great practical 
importance of boundary-layer flows in nature and in industry. It was 
also noted that properties of the laminar flat-plate boundary-layer 
flow (often called 'the Blasius flow' since its velocity profile was 
computed by Blasius as long ago as 1908; cf. Chap. 2, p. 110) have 
been intensively studied by both theorists and experimenters during 
many years. These studies led to many interesting results which, 
unfortunately, have not solved all the problems relating to 
boundary-layer flow instability and transition to turbulence, but 
nevertheless have considerably clarified the situation and had a 
great effect on the whole weakly-nonlinear theory of hydrodynamic 
instability. 

The main topics of the present chapter are the nonlinear 
resonance among three wave-like disturbances with small 
amplitudes of the same order of magnitude appearing in the 
boundary-layer flow, and the secondary instabilities of two- 
dimensional waves of small but finite amplitudes with respect to 
wave disturbances of other types. However, some other multimode 
weakly-nonlinear theories of hydrodynamic instability will also be 
briefly considered. Let us stress again that although enormous 
amounts of research effort were devoted during the whole 20th 
century to the study of instability and transition to turbulence of 
flat-plate boundary layers, our understanding of these processes is 
still far from being complete. This statement repeats the remark 
made more than thirty years ago by Tani (1969), and the intervening 
years have not shaken its correctness. One of the first puzzles 
relating to instability was produced by the discovery in the classical 
experiments on boundary-layer stability by Schubauer and Klebanoff 
(1956) [see also Schubauer (1958)], Klebanoff and Tidstrom (1959) 
and Klebanoff et at. (1962) of the fact that the development in a 
boundary layer of an initially small two-dimensional disturbance 
always leads to the appearance slightly later of some fast-growing, 
spanwise-periodic three-dimensional structures. [This fact was later 
confirmed by many other authors; see, for example, the papers by 
Tani (1967) and Komoda (1967) which preceded a great number of 
more detailed experiments and numerical simulations, some of which 
will be discussed below.] The streamwise development of these 
structures was thoroughly studied by Klebanoff et al. (and then also 
by Tani, Komoda, and many others). All the above-mentioned 
authors followed Schubauer and Skramstad (1947) in using a 
vibrating   ribbon   to  excite   waves   in  the   boundary    layer.   However 
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Klebanoff et al., and then Tani, Komoda, and some others, modified 
this method by inserting spacers (typically small pieces of adhesive 
tape) at regular intervals beneath the ribbon, thus producing a weak 
spanwise periodicity of the disturbance. The spanwise wavelength 
then depended on the distance between adjacent pieces of tape, and 
hence could be varied; in the above-mentioned experiments it was 
always chosen to be equal to that appearing in experiments without 
any spanwise forcing. Therefore here the usual 3D periodicity was 
present at the beginning of the studied flow. 

The appearance of flow three-dimensionality evidently 
contradicted the known results of linear stability theory (see, e.g., 
Sec. 2.81) according to which the most unstable small disturbances in 
any plane-parallel flow of viscous fluid have the form of two- 
dimensional waves independent of the spanwise coordinate y. This 
contradiction could evidently be explained only by some nonlinear 
effects which were neglected in the linear theory. However, to 
develop such an explanation it was necessary to go beyond the 
Landau approach where only the evolution of disturbance amplitude, 
but not the change of its shape, was considered. 

Benney and Lin (1960) and Benney (1961, 1964) were among 
the first who attempted to explain theoretically the growth of three- 
dimensionalities in disturbed plane-parallel flows. For this purpose 
they applied second-order weakly-nonlinear theory (which 
preserves only terms of the first two orders in disturbance 
amplitudes) to the simultaneous development, in a plane-parallel 
shear flow, of two rather small disturbances: a two-dimensional (2D) 
wave proportional to exp(ikx-icot) and a three-dimensional (3D) wave 
proportional to expiikx-iojj^cosikiy) where co and co\ are complex 
parameters having the same real parts, co0 = 3iea> = 5Kecoi. (In the first 
two papers the case of a flow in an unbounded space with a 
hyperbolic-tangent velocity profile was considered, while in the third 
paper the simplified model of a plane-parallel boundary-layer flow 
having the piece wise-linear velocity profile shown in Fig. 3.1a was 
used as the primary flow.) Although the velocity profiles studied 
differed from the real boundary-layer profile, some of the features 
of the predicted wave developments recalled phenomena observed 
in the boundary-layer stability experiments. However, the 
agreement with experimental data was only qualitative and quite 
incomplete, and the subsequent attempt by Nakaya (1980) to repeat 
the calculations using the Blasius boundary-layer velocity profile 
instead of some simplified model of it did not lead to more 
satisfactory     results.     Moreover,     Stuart     (1962a)     noted    that     the 
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assumption used in the above-mentioned papers, that 2D and 3D 
waves have the same (real) frequency, contradicts the available 
experimental' data, and Craik (1971) stressed that in these papers the 
spanwise wavelength was chosen quite arbitrarily while experiments 
show that it has a definite preferred value. [In fact, Klebanoff et al. 
and then also Anders and Blackwelder (1980) and some other early 
experimenters found that this wavelength always takes the same 
value; however later it was shown that this statements is incorrect.] 
Antar and Collins (1975) relaxed Benney and Lin's, and Benney's, 
assumptions and accepted that Aco0 = Sieco -SRewi may differ from zero 
(and then used in their computations, relating to both Blasius and 
Falkner-Skan boundary-layer velocity profiles, values of AcoQ given 
by numerical-simulation results). Then Nelson and Craik (1977) 
considered another relaxation of Benney and Lin's and Benney's 
models, assuming that Ao)Q = 0 but accepting that the streamwise 
wave numbers of 2D and 3D waves may take different values, while 
Herbert and Morkovin (1980) studied the superposition of a 2D 
wave, with the wave vector k! = (kh 0), and a spanwise wave with 
wave vector k2 = (0, k2). These generalizations of the previous 
models, which will not be considered at length here, yielded a 
somewhat better (but not too good) agreement with the experimental 
data available in the 1970s [see Craik's paper (1980) especially 
devoted to comparison of various theoretical models with the 
experimental data of Klebanoff et al. (1962) and Kovasznay et al. 
(1962)]. 

Stuart (1962a,b) supplemented his criticism of the Benney and 
Lin model by a sketch of a somewhat different approach to the study 
of development of three-dimensionality in plane-parallel flows. 
Namely, he applied a weakly-nonlinear analysis of Landau's type to 
the time evolution of a pair of interacting small wave disturbances 
(one 2D and the other 3D) having finite real amplitudes, arbitrary 
complex frequencies coh co2 and real wave vectors ki= (kj, 0) and k2 = 
(ki, k2). Neglecting terms of higher than third order with respect to 
wave amplitudes, Stuart showed that here Landau's equation (4.34) 
is replaced by the system (4.43) of two coupled nonlinear equations 
for the amplitudes Ai(t) and A2(t) of the two waves. However he did 
not try to compute the coefficients of these equations in preparation 
for solving these equations for any particular plane-parallel flow. 
Instead, he confined himself to a description of the equilibrium 
finite-amplitude solutions of these equations, and discussion of the 
stability of the resulting equilibrium states (see Sec. 4.21 above). 
Later   Itoh   (1980)   carried   out   an   approximate    evaluation    of    the 
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coefficients of Eqs. (4.43) for a plane Poiseuille flow with Re = HU(/v 
varying in the range from 4000 to 8000, which covers both 
subcritical and supercritical conditions (here H and U0 are the half- 
distance between the walls and the maximum velocity of the 
undisturbed flow). It was also assumed by Itoh that kjH = 1 while 
k2H takes a number of values not exceeding 1. Moreover, the 
popular assumption that the contribution of the least stable 
eigenmode of the linearized equations of motion must dominate the 
eigenfunction expansions of both 2D and 3D nonlinear waves was 
also accepted and used to simplify the computations. The coefficients 
of Eqs. (4.43) were found to be dependent on the phase difference of 
the two waves considered, but this dependence could be eliminated 
by averaging the solutions over the period of 'fast oscillations' 
produced by the difference of the primary frequencies of 2D and 3D 
waves. Using such averaging Itoh found some conditions for stability 
of a two-dimensional wave, superimposed on a plane Poiseuille flow, 
to three-dimensional wave disturbances, and he estimated the 
threshold value of the 2D-wave amplitude A\ above which the three- 
dimensional waves are continuously growing. Using numerical values 
for the coefficients in the equation, the equilibrium solutions (4.44) 
for Poiseuille flows could be found and their stability characteristics 
determined. Even earlier, these stability characteristics were studied 
by Volodin and Zel'man (1977) for the simpler case of two 
interacting two-dimensional T-S waves in the Blasius boundary-layer 
flow at supercritical values of Re. 

Let us recall that in the 1960s, when Benney and Lin began to 
study the time evolution of two-mode disturbances in plane-parallel 
flows, they assumed that the streamwise wave numbers of a two- 
dimensional and a three-dimensional wave have the same value of k. 
This assumption [which was later rejected by Nelson and Craik 
(1977)] evidently excluded the possibility of including the 2D and 3D 
waves in a resonant triad of wave disturbances. However, even 
before the appearance of these studies, Raetz (1959) stated that 
according to his computations for the plane-parallel model of a 
Blasius boundary layer, there exist some triads of three-dimensional 
wave disturbances which satisfy the conditions (5.2b). These 
conditions imply that the corresponding waves may interact 
resonantly, producing rapid growth of wave amplitudes, and Raetz 
suggested that such resonant instability of wave triads may play an 
important part in  the  transition  of boundary  layers  to  turbulence. 

Raetz considered only neutral 3D waves corresponding to real 
values   of the eigenfrequency   co.   Because his report   of 1959   did not 

19 



contain a complete description of the computations, Stuart, preparing 
his survey lecture (1962a), computed anew one more resonant triad 
for a Blasius boundary layer at a supercritical value of Re (this triad 
also consisted of three-dimensional neutrally-stable waves; according 
to Raetz resonant triads do not exist among purely two-dimensional 
waves). However, neither Raetz nor Stuart computed the 
corresponding growth rates [determined by the values of three 
coefficients Q in equations (5.3)]. This was, of course, a necessary 
step; recall that in general conditions (5.2b) are necessary for the 
resonant character of three-wave interactions, but do not guarantee 
that resonance will actually occur in all cases where these conditions 
are   valid. 

A much more detailed study of resonant three-wave 
interactions in boundary-layer flows was carried out by Craik 
(1971). He noted that Raetz's and Stuart's limitation to only 
neutrally-stable waves strongly restricts the class of resonant wave 
triads to be studied, since such triads can in principle also exist 
among both subcritical and supercritical waves. [In the case of non- 
neutral waves the real frequencies C0i must of course be replaced, in 
the first condition (5.2b), by the real parts 9*e»; of the corresponding 
complex eigenvalues C0i=c/k} of the Orr-Sommerfeld equation (2.41), 
but no limitations are imposed by these conditions on their 
imaginary parts.] However Craik did not consider the general case of 
arbitrary triads of three-dimensional Tollmien-Schlichting (T-S) 
waves with any wave numbers k1; k2 and k3. As in his paper of 1968 
on gravity waves, discussed at the end of the previous subsection, he 
examined only special triads comprising one 2D wave propagating in 
the streamwise direction (proportional to exp[i(kx - cot)]) and two 3D 
waves   proportional   to exp[i(k}x ± k2y - cojt)] (i.e., inclined   at  equal 

but opposite angles 0li2 = ±tan_1(fc2/fci) to the flow direction). Hence 
he assumed that k! = (k, 0), k2 = (ku k2) and k3 = (ku-k2) and thus 
the resonance conditions (5.2b) took the very simple form kx -kl2, 
Sitcom SRectj/2 [cf. (5.7)]. The reason for giving much attention to such 
special triads was connected with the fact that here the three waves 
have the same phase velocity c = 'Reco/k = Sie(0\/ki and hence there is 
only one critical layer, at the height zo where U(zo) = c. Since it is 
known that the most intensive interaction of a small wave with the 
primary steady flow takes place in the vicinity of the critical layer 
[see, e.g., the discussion of the role of a critical layer in nonlinear 
resonant interactions by Mankbadi (1990, 1991, 1994), Mankbadi et 
al. (1993),   and  Goldstein  (1995)],   it is natural   to expect  that  in the 
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case where three interacting waves have the same critical layer 
these waves may extract energy from the primary flow in a 
particularly powerful manner. This expectation was confirmed by 
Craik (1968) for the case of gravity waves on the surface of a liquid 
shear layer; the results of his paper of 1971 (see below) also agreed 
with the stated expectation rather well. (A small correction of the 
conclusion that in this case the oblique-wave growth must take a 
maximal value was discovered later, and will be discussed in Sec. 5.4; 
see, in particular, Figs. 5.13-5.15 there and the text relating to these 
figures.) 

In the case of the T-S waves in a plane-parallel primary flow 
the search for possible resonant triads may be facilitated 
considerably by the use of the Squire theorem presented in Sec. 2.81. 
According to this theorem 6)j(fci,fc2,Re) = u)/lkl,0,fciRe/lkl), where 

G)j(ifci,ifc2>Re) = Cj(fci,fc2.Re)/fci is the 7 th eigenfrequency of the general 
O-S equation (2.41) corresponding to the wave vector k = (kuk2) and 

Reynolds number Re, while Ikl = (kl
2+k2

2)m. Thus here we need only 
the eigenvalues co^k, 0, Re) of the two-dimensional O-S equation 
(2.44) for various values of k and Re. One convenient method for 
determination of such resonant triads in the case of a plane-parallel 
flow with a given value of Re begins with the plotting of the curves 
<^QCo(kj,k2yk1=cT(k1,k2)= const, and 3mco(k1,k2)/k1 =c1(k1,k2) = const, 
[where c(kltk2) is the eigenvalue of the O-S eigenvalue problem 
(2.41)-(2.42) with the greatest imaginary part] in the (fc7,fc2)-plane 
(the Squire theorem is, of course, very useful here). Then one may 
select an arbitrary point (k, 0) on the fci-axis, plot a curve cr = const, 
passing through this point, and then determine the two intersections 
(symmetric with respect to the kx axis) of the line kx =k/2 with the 
plotted curve. These intersections determine the values k2 and -k2 

such that the oblique waves with wave vectors k2 = (kltk2) and k3 = 
(ki,-k2) together with the 2D wave with the wave number ki = (k, 0) 
make up a resonant triad. Therefore, normally for any wave number 
k the resonant triad may be found which consists of a 2D wave with 
the wave vector k[ = (k, 0) and two symmetric oblique waves with 
wave  vectors   k2 = (k/2,k2) and k3 = (k/2,-k2). 

Craik (1971) applied this method to find a number of resonant 
triads for two-dimensional Blasius boundary layers with various 
values of Re = Re* = U08*/v. (Here U0 is the free-stream velocity and 
(5* is the displacement thickness. Below these velocity and length 
scales will be used to make dimensionless all physical parameters 
relating   to the Blasius boundary   layer;  therefore,   the  symbol  k    will 
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now denote the dimensionless combination k5*, the symbol a the 
combination ' coö*/U0 and so on.) Fig. 5.1a shows one of Craik's 
examples, for Re* = 882. Here two resonant triads are denoted by 
dotted arrows; the first of them with k - 0.254 includes the linearly- 
most-unstable 2D wave as its first component while its second and 
third components are linearly stable, and the second triad with k = 
0.46 includes the linearly-stable 2D wave but linearly-unstable 
oblique waves. Later F. Hendriks [see his Appendix at the end of 
Usher and Craik's paper (1975)] extended Craik's calculations to the 
six additional resonant triads (with 0.1 < k < 0.5) in the Blasius 
boundary layer with Re* = 882; some comparisons of the results of 
Craik's and Hendriks' calculations with experimental data were made 
by Craik (1980). A number of other examples of resonant triads of 
the same type in Blasius boundary layers with various values of Re 
(mostly supercritical, i.e. exceeding Recr) and k may be found, in 
particular, in Volodin and Zel'man's paper (1978) and the book by 
Schmid and Henningson (200$. As an example, two triads computed 1 
by Schmid and Henningson for Re* = 750 are presented in Fig. 5.1b; 
here the first triad (where k « 0.37) comprises three waves which 
have close to zero negative growth rates according to linear stability 
theory, while all members of the second triad (where k « 0.18) are 
essentially stable (have appreciably negative rates of growth). In 
Figs. 5.2a,b, also taken from Schmid and Henningson's book, the ilj^.u.h% 
linear  stability  properties   of all   resonant   triads   of Craik's type  with She.6 
k < 0.5 are shown for two Reynolds numbers, Re* = 600 and 1000. 
One may see that at Re* = 600 there is a range of wavenumbers k 
where the 2D component of a resonant triad is linearly unstable, 
while the 3D components are linearly stable at any k; on the other 
hand, at Re* = 1000 both 2D and 3D component may be 
simultaneously unstable. Note, however, that for linearly-stable 
oblique T-S waves entering a resonant triad, the rates of their 
resonant growth usually greatly exceed the rates of their decay given 
by the linear theory of stability. Therefore the linear stability of such 
waves in fact plays no part here. 

An essential part of Craik's paper of 1971 was devoted to 
approximate evaluation of the coefficients Ch C2 and C3 of equations 
(5.4) for the amplitudes of three resonant waves. It was based on the 
use of nonlinear equations for the velocity components of a steady 
primary flow disturbed by three T-S waves of small amplitude. 
Craik's main attention was given to asymptotic results for large 
values of kRe. He found that if the critical layer is located far from 
flow boundaries,  then, under rather general conditions,  in the case of 
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fairly large (but finite) values of the Reynolds number the 
magnitudes of the coefficients are Cx = O(Re), C2 = O(Re), and C3 = 
0(1), for an arbitrary velocity profile U{z) of the primary flow (here 
it is assumed that the 1st and 2nd waves are the oblique ones while 
the 2D wave has number 3). This shows that, again, the amplitudes of 
two oblique waves grow very fast at the expense of the energy of the 
primary flow, while the amplitude of the two-dimensional wave 
changes  much more  slowly. 

Since Craik's results relating to the Blasius velocity profile U(z) 
and triads of waves shown in Fig. 5.1a were found to be very 
complicated and cumbersome, he also considered the simpler model 
of a piecewise linear velocity profile of the form 

U(z) = bz,b>0,  fovO<z <H,   U(z) = bH=U0   forz>H     (5.9) 

(shown in Fig. 3.1a in Chap. 3). For this profile, Craik was able to find 
explicit asymptotic equations for the coefficients of equations (5.4) 
which showed at once that in this case C\ = O(Re), C2 = O(Re) and C3 = 
0(1) at large values of Re = U0H/v. 

Later Reutov (1990) examined resonant wave interactions in the model 
of a boundary-layer flow with the velocity profile (5.9), assuming that v = 0 
and hence Re = » [note that stability with respect to infinitesimal disturbances 
of such an inviscid flow was thoroughly investigated by Tietjens (1925) whose 
results were used extensively by Craik]. Reutov's idea was to show that results 
similar to those found by Craik may be obtained more easily for a simpler case 
of inviscid fluid. In the inviscid flow with the velocity profile (5.9) the 
dispersion relation determining the frequency co of a three-dimensional wave 
proportional   to   e\p[i(kjx + k2y -cot]    has the form 

co = k]Un[\ —(1 - exp(-21 k I //)],   Ikl  = (tf + fcj2)1'2. (5.10) 
i  öL     2|klH 

[Eq. (5.10) was also obtained by Tietjens (1925); it is, of course, much simpler 
than the dispersion relations for viscous plane-parallel flows where the 
possible values of co at given k are given by the eigenvalues of the 
corresponding O-S problem (2.41)-(2.42).] Like Craik, Reutov considered only 
the wave triads consisting of a two-dimensional wave which is proportional to 
e\Tp[i(kx-cot)] and two oblique waves proportional to exp[i(k,x ± k2y - co,t)]. 
Conditions (5.2b) then take the form (5.7), and by virtue of Eq. (5.10) these 
conditions will be valid here if, and only if, k/k^ =2 and k2/kl = V3. Hence 
here possible resonant triads consist of a 2D wave with wave number k (which 
can take any value) and two oblique waves with streamwise wave number kl 2 
which are inclined at angles ±60° to the primary-flow direction. Investigating 
the nonlinear interaction between three plane waves of small amplitudes, 
Reutov paid his main attention to the subject studied in his earlier paper 
[Reutov  (1985)],  namely   to  the  most  important   contribution    to this   interaction, 
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which is produced in the vicinity of the critical layer where U(z)=c. He was 
able to show that at small positive values of t, when it is sufficient to keep only 
the terms of first and second order in the amplitudes, oblique waves grow 
exponentially while the amplitude of a two-dimensional wave remains 
practically constant. Thus here also a strong nonlinear resonance takes place, 
and leads to very effective transfer of energy from the inviscid steady flow to 
a pair of oblique waves; the two-dimensional wave plays the role of a catalyst, 
stimulating   this   process   but   preserving   practically   constant   amplitude. 

For the case of nonlinear development of resonant wave disturbances 
in viscous plane-parallel (or nearly plane-parallel) fluid flows, Zel'man (1974) 
proposed to take an average of the equations of motion over an 'intermediate 
region' which is much smaller than typical scales of change of the most 
important 'slow variations' of wave amplitudes but much greater than the 
wave lengths and periods of unimportant rapid oscillations, which 
considerably complicate the required solution. This method generalizes 
Landau's approach (1944) considered at the beginning of Sec. 4.21, and also 
has many features in common with the popular method of multiple scales, 
which was mentioned several times in Chap. 4 and will be mentioned again 
later in this chapter. This method of averaging has many applications to 
various physical problems relating to nonlinear oscillations and waves [see 
e.g. Chap. 11 of the book by Rabinovich and Trubetskov (1989)]. In particular, 
after 1974 this method was often applied to fluid-dynamic equations, where it 
facilitated the evaluation of interaction coefficients in the equations for 
amplitudes of resonant wave systems. One of the first examples of its use was 
due to Volodin and Zel'man (1978) who applied this method to the study of the 
spatial, rather than temporal, development of resonant wave triads of Craik's 
type in a Blasius boundary-layer flow. [For further applications of the method 
of averaging to development of disturbances in boundary layers see Zel'man 
and Kakotkin (1985), Zel'man (1991) and Zel'man and Maslennikova (1993a).] 
Volodin and Zel'man based their analysis on the numerical integration of the 
averaged nonlinear equations for the vertical velocity w and the vertical 
vorticity £ = £3 of the disturbed flow [i.e. Eqs. (3.44) and (3.54) supplemented by 
nonlinear terms]. These equations are equivalent to the Navier-Stokes 
equations for velocity components (since components u and v may be 
determined if w and £ are known) but the velocity-vorticity equations do not 
contain the pressure; therefore they are more convenient and are used very 
frequently [see e.g. the review paper by Gatski (1991)]. The computational 
procedure used by the above authors allowed them to determine the values of 
the interaction coefficients Bl2 and B3 in Eqs. (5.4a), relating to wave 
amplitudes A-,(x), i =1,2,3, for a number of values of Re* in the range from 
650 to 1300, and of the non-dimensionalized wave number £, = k/2 in the 
range from 0.19 to 0.5. (Recall that in the case of a two-dimensional least-stable 
T-S wave with k2 = 0, values of Re* and k uniquely determine the value of co.) 
By virtue of the 3D Orr-Sommerfeld equation (2.41), if the values of Re* and co 
are fixed then the value of kx   determines   the   value   of k2 for the   most unstable 

wave and therefore also determines the inclination angles 0,2 = ±tan~l(k2/kI) 
of the oblique components of the wave triad [for more details see Kachanov 
and Michalke (1994, 1995) and Kachanov (1996)]. Volodin and Zel'man found 
that in the spatial formulation of the stability problem the ratio Ißli2l/I53l also 
takes fairly large values, which increase appreciably with increasing Re* 
(the coefficients ß, and B2 coincide here for reasons of symmetry). They also 
applied  the  approximate  method   of Bouthier  (1973)   to   incorporate    the  effect   of 
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streamwise variation of the boundary-layer flow into the computation; it was 
found that this effect does not invalidate the important conclusion formulated 
above. This conclusion was later confirmed by the analytical investigations of 
resonant-triad development in a streamwise-growing boundary layer b y 
Smith and Stewart (1987), Nayfeh (1987a,b) [who criticized some of the 
assumptions of Smith and Stewart which were called in question also b y 
Mankbadi et al. (1993) and Wu (1993, 1995); see also Healey's (1995a) critical 
discussion of various approximations used in derivation of multimode 
amplitude equations], and the papers by Khokhlov (1993, 1994) (who used a 
slight modification of Smith and Stewart's assumptions), and Zel'man and 
Maslennikova (1984, 1993a) (some results of the latter authors will be discussed 
below). 

Craik (1971) considered, at the end of his paper, several exact solutions 
of some particular amplitude equations of the form (5.4) [for the simplest case 
of Eqs. (5.3) with constant coefficients Cv exact solutions, represented in terms 
of elliptic functions, were found independently by Jurkus and Robson (1960), 
Armstrong et al. (1962) and Bretherton (1964)]. Craik's solutions also include 
examples where amplitudes of some waves become infinite after a finite time. 
(These singularities apparently show that the wave energy grows faster than 
exponentially; of course, the second-order equations (5.4) cease tobe valid in 
such cases before the predicted 'infinite instability burst' occurs.) Later Craik 
and    Adam    (1978)    and    Craik    (1978,     1985)     also    considered three-wave 
resonances, for waves with amplitudes depending on both spatial coordinates 
and time. In this case the left-hand sides of Eqs. (5.3a) must be supplemented 
by the terms (VjV)Aj where Vj is the appropriately-defined velocity of the it h 
wave. Wave systems of such types are met in a number of diverse physical 
problems; therefore the exact solutions of some of the corresponding 
amplitude equations found by Craik may have many applications. However, 
this     subject  will  not be  discussed here  at any  length. 

Craik (1971) found also that 'direct computation' of the interaction 
coefficients Q with the help of the Navier-Stokes equations was quite 
complicated and labor-consuming. Therefore Usher and Craik (1974) tried to 
replace the ordinary form of N-S equations in this computation by the 
variational formulation suggested by Bateman and presented in the textbook 
by Dryden, Murnaghan and Bateman (1956). This attempt was stimulated by the 
fact that in the case of a similar problem for capillary-gravity waves a 
variational analysis by Simmons (1969) proved to be much more simple and 
elegant than the 'direct evaluation' of the interaction coefficients b y 
McGoldrick (1965) by means of Euler's inviscid equations of motion. According 
to Usher and Craik the viscous terms and the non-self-adjointness of the N-S 
equations considerably complicate the derivation of an appropriate 
variational formulation of these equations. Nevertheless, such a formulation 
can be found, and it indeed allows computation of the interaction coefficients 
more simply than by Craik's method of 1971. However, the subsequent rapid 
increase in the power of digital computers, combined with the development of 
improved numerical methods, soon made applications of the variational 
method    unnecessary. 

A more complete, but still weakly-nonlinear, theory of 
resonant three-wave interactions, which takes into consideration 
terms of third order in wave amplitudes, was developed by Usher 
and    Craik    (1975).    Recall   that    the    Landau     and    Stuart-Landau 
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equations (4.34) and (4.40) for the amplitude of a single mode, and 
Stuart's equations (4.43) for amplitudes of a pair of non-resonantly 
interacting modes, both include terms of the third order (but the 
second-order terms are absent from these equations). Hence the 
amplitude equations, which include terms up to the third order, 
generalize both the one-mode and two-mode equations, by Landau 
and Stuart, and equations (5.4) for the three-wave resonant 
interactions. The third-order amplitude equations for three-wave 
resonant interactions derived by Usher and Craik [and later by 
Weiland and Wilhelmsson (1977) and Goncharov (1981); see also 
Craik (1985), Sees.  16.3 and 25-26] have the form 

^ = co^A, + CXA[A, + A^ I A, I2 +cn I A, I2 +c13 I A3 I2), 
dt 

dAy 
= 0)«% + C2A*A3 + A,(c2I I A, I2 +c221 A2 I2 +c23 I A3 I2), (5.11) 

dt 

ü),(0A3 VQA^ + A3(c31 I A, I2 +c32 I A2 I2 +c33 I A3 I2). 
dt 

(In the case of non-resonant three-wave interactions, third-order 
amplitude equations have the same form but with C\ - C2 = C3 = 0; 
therefore, non-vanishing of the latter coefficients shows that the 
wave   interactions   are  resonant.) 
Compared with Eqs. (5.4), the new equations include nine additional 
unknown coefficients cy. Usher and Craik gave their main attention 
to the case of a resonant triad of Craik's type, consisting of two 
symmetric oblique waves and one plane 2D wave. As in Craik (1971), 
they assumed that numbers 1 and 2 correspond to the oblique waves 
while number 3 corresponds to the 2D wave; then the oblique-wave 
symmetry implies that cn = c22, cn = c23, cn = c2x, and c3J = c32. 
Therefore, in this case only five new coefficients need evaluation. 
Nonlinear N-S equations for velocity components lead to some 
lengthy expressions for these coefficients, which show that at large 
values of Re all coefficients take large values (proportional to some 
positive powers of Re). These asymptotic estimates force one to 
conclude that at large values of Re the second-order equations (5.4) 
may be valid only for waves with rather small amplitudes. 

Craik (1975) studied equilibrium solutions of the third-order 
three-wave amplitude equations (5.11) and the stability of these 
solutions. Recall that the third-order Landau and Stuart-Landau 
equations (4.34) and (4.40) imply that if Landau's constant 5 > 0, 
then at small  supercritical values  of Re > Recr there   is an equilibrium 
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periodic   solution   of  Eq.   (4.40)    which   separates    from   the   steady 
primary flow  by a Hopf bifurcation.   On the other  hand,  if 8 <0, then 
an equilibrium  solution exists  under slightly  subcritical   conditions   Re 
<Recr where   aperiodic  wave  of finite  amplitude   .separates   from  the   ^fit4-c^ 
primary    flow   if its   initial   amplitude    exceeds   a   small,   but   finite, 
critical value [proportional to (Recr - Re)1/2]. Craik used Eqs. (5.11) for 
investigation   of the  stability   of equilibrium   solutions   of Eqs. (4.40) 
with respect to pairs of symmetric oblique waves of small amplitude, 
and     determination      of    conditions     making     possible     a    second 
bifurcation, leading to the appearance in the flow  of a resonant   triad, 
consisting   of the  same   two-dimensional    wave   as  that   entering   the 
primary   equilibrium   solution  together  with   symmetric   oblique  waves 
of finite amplitudes. These results of Craik are relevant to the results 
by   Herbert    (1984a,    1985,    1986,    1987,    1988a,b)    relating    to   the 
secondary-instability   mechanism   of  boundary   layer   instability   which 
will be considered  slightly later in this  subsection. 

Let us now revert to discussion of Craik's (1971) resonant 
triads consisting of one two-dimensional T-S wave with the angular 
frequency co and wave vector (k, 0) and two fully symmetric oblique 
waves with the same frequency coll and wave vectors (Jc/2, ±k2). 
Following Craik we will assume that three waves of a triad have 
small amplitudes of the same order of magnitude. Assume that the 
value of co is determined by the conditions of the experiment and is 
therefore known. [This condition is fulfilled, in particular, if the 2D 
plane wave is excited by some device oscillating with a fixed 
frequency - e.g., by a vibrating ribbon used by Schubauer and 
Skramstad (1947) and then by many others; or by an acoustic 
radiator used, among others, by Morkovin and Paranjape (1971), Yan 
et al. (1988), and a number of authors cited by Nishioka and 
Morkovin (1986); or by a heating element with periodically varying 
temperature used, in particular, by Liepmann et al. (1982); or by 
localized periodically-alternating blowing and suction of fluid 
considered by Konzelmann et al. (1987)).] Among the flow 
disturbances produced by a device oscillating with frequency co, a 
dominant role is played by the least-stable T-S wave having this 
frequency; such a wave is always two-dimensional and its 
wavenumber k can be uniquely determined from the two- 
dimensional O-S eigenvalue problem (2.44), (2.42). If this wave is 
linearly unstable, then it will grow, and some time later will excite a 
pair of oblique waves forming, with the primary T-S wave, Craik's 
resonant triad (or, maybe, a fast-growing triad close to this - such a 
possibility will be  discussed later). 
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In the case when Craik's triad alone is excited (here, only this 
case will be considered) the spanwise wavenumbers ±k2 of the 
oblique waves with frequency co/2 and streamwise wavenumber kl 2 
may be determined from the three-dimensional O-S eigenvalue 
problem (2.41), (2.42). [A number of results relating to computation 
of the 3D T-S waves by numerical solution of this eigenvalue 
problem (where k\, and not co, is considered as a complex 
eigenvalue), supplemented by comparison of the results obtained 
with the available experimental and numerical-simulation data, were 
presented by Kachanov and Michalke (1994, 1995) and briefly 
discussed by Kachanov (1996).] Consider now another case, where 
the disturbances penetrate into the boundary layer from an 
unsteady external stream generating background "noise", including 
an extensive collection of various weak fluctuations. Then among the 
boundary-layer waves produced by these fluctuations the two- 
dimensional T-S wave with the greatest linear growth rate will 
naturally dominate the initial stage of disturbed-flow development. 
At a given value of Re, such a wave has definite values of co and k 
which may be determined with the help of Eqs. (2.44) and (2.42) [see 
Figs. 2.23 and 2.26]; hence here also the values of co and k may be 
considered as known. Knowledge of co and k (and hence also of co/2 
and k/2) again allows the spanwise wavenumbers ±k2 of the oblique 
components of the resonant triad to be determined uniquely, from 
Eqs. (2.41) and (2.42). We see that in the framework of Craik's model 
the spanwise periodicity of the 3D structure may usually be 
determined   uniquely. 

However, the uniqueness of the value of k2 at given values of 
Re, co and k is contradicted by the data of Saric and Thomas (1984), 
Saric et al. (1984), and Kozlov et al. (1984) who found that in their 
experiments (where a 2D wave was excited by a vibrating ribbon) 
the observed value of k2 depended not only on co and k but also on 
the initial amplitude of the excited 2D wave (for more details see the 
next Sec. 5.3). On the other hand, the exact symmetry of oblique 
waves entering Craik's triad clearly requires the initial real 
amplitudes IA(0)l and phases 0(0) (where IA(0)le/e(0) = A(0) is the 
initial complex amplitude) of two oblique waves to coincide with 
each other. This requirement appreciably restricts the Craik model of 
development of three-dimensional disturbances in a boundary layer. 
These two circumstances led Herbert (1983a, 1984a) and Saric and 
Thomas (1984) to doubt the universal applicability of Craik's model 
of resonant-triad   generation   of  three-dimensionality  in   steady   plane- 
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parallel (or nearly plane-parallel) shear flows and to attribute some 
of the observed 3D structures in such flows to the secondary- 
instability   mechanism. 

The suggestion that the discrepancy between Craik's theory 
and experiment, and the apparent restrictions of this theory, 
required it to be replaced by a more universal secondary-instability 
approach was not unanimously supported. In particular, Zel'man and 
Maslennikova (1985, 1989, 1990, 1993a) [see also Maslennikova and 
Zel'man (1985)] showed that exact symmetry of oblique waves 
(which implies that the initial amplitudes of two oblique waves must 
take the same value), and exact equality of the oblique-wave real 
frequency and streamwise wavenumber to half those of the 
accompanying plane wave, are not necessary for the rapid resonant 
growth of two oblique waves entering the wave triad. They 
considered wave triads where the frequencies and wave vectors of 
the plane wave and the two oblique waves are {co, k, 0} and {coll, 
k^k/2, ±k2}, respectively, but with kl2-kx * 0 [for given values of co 
and k2 the values of k and k\ may be uniquely determined with the 
help of the O-S equations (2.44) and (2.41); therefore only the values 
of co and k2 can be chosen arbitrarily]. According to the results of 
Zel'man and Maslennikova's computations, if the initial amplitudes 
IA2(0)l and IA3(0)l of two oblique waves are not equal and kx does not 
coincide exactly with k/2, the growth of oblique-wave amplitudes 
nevertheless remains much larger than the growth of the plane- 
wave amplitude. Moreover, the nonlinear interactions usually lead to 
rapid equalization of amplitudes IA2(0l and \A3(t)\ and to recovery of 
oblique-wave symmetry, and after a short time these two 
amplitudes become greater than the amplitude of the 2D wave. Still 
later, fast-growing oblique waves start to influence the plane wave 
very strongly, and cause its explosive growth which is more rapid 
than  the  exponential  growth of the  oblique waves. 

The above formulation is the temporal one, but in fact Zel'man 
and Maslennikova considered the spatial, not temporal, growth of 
boundary-layer waves which is more convenient for comparison 
with the experimental data. Therefore they used amplitude 
equations of the form (5.4a), not (5.4), and determined the 
corresponding interaction coefficients Bn, n - 1, 2, 3, by the method 
generalizing that applied by Volodin and Zel'man (1978) to the study 
of spatial development of strictly symmetric wave triads (see the 
discussion of this paper on p.24). A typical example of results more 
general than those found in 1978 is shown in Fig. 5.3, taken from 
Zel'man   and    Maslennikova's    paper    (1993a).    In    this    figure    the 
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dependence of wave amplitudes IAj(x)l, i = 1, 2, 3, on the stream wise 
coordinate x is replaced by their dependence on Reynolds number 
Re+ = U0S

+/v = (U0x/v)m = (Rex)
1/2, where 5*= (vx/U0)m « 0.585* is a 

new scale of the boundary-layer thickness which is often used 
instead of 8* (it was used, in particular, in Chap. 2, p. 110). Fig. 5.3 
corresponds to some definite values of the dimensionless frequency F 
- (üV/UQ and spanwise wavenumber K2 = vk2/U0 (the frequency F 
was already used in Chap. 2 - see Figs. 2.26 and 2.27) and to the case 
where initially \AX\ » \A2\ » IA3I (where lAJ is the plane-wave 
amplitude) and the initial phases of the waves are matched. 
Logarithmic scaling of the amplitudes allows us to see clearly the 
region of exponential growth of oblique-wave amplitudes and the 
explosive growth of plane-wave amplitude at Re >Ren (for simplicity 
the usual notation Re will be used to denote the particular Reynolds 
number Re+). Zel'man and Maslennikova (1993a) also presented 
figures showing examples of the plane-wave and oblique-wave 
amplitude-growth curves for (a) a fixed value of the initial oblique- 
wave amplitudes IA2l(Re0) = IA3l(Re0) and three different initial 
plane-wave amplitudes IAil(Re0), (b) fixed values of both IA2l(Re0) = 
IA3l(Re0) and lAJtReo), but with three different values of initial phase 
mismatch, and (c) a fixed value of IAil(Re0), and three different 
values of IA2l(Re0) = IA3l(Re0) (it was assumed here that Re0 =500, 
IAil(Re0) > IA2l(Re0) = IA3l(Re0), and that in cases (a) and (c) there is no 
phase mismatch). The figure corresponding to case (a) illustrated the 
existence of a threshold value of lAil below which the plane wave 
cannot excite the rapid growth of three-dimensional oblique waves 
which in turn produces the later explosive growth of the plane wave 
itself. 

Zel'man and Maslennikova (1990, 1993a) stated that a more 
general and accurate version of the three-wave-resonance theory 
described in their papers showed that the three-wave resonance 
could be considered as the universal dominant mechanism of the so- 
called subharmonic (S-type or, alternatively, N-type - the latter 
name will be used consistently in Sees. 5.3 and 5.4) instability 
development in boundary layers (for more detailed discussion of this 
type of instability development see Sec. 5.3). However, this 
statement also was not universally accepted. Moreover, it did not 
imply that the other possible mechanisms are worthless; the authors 
only insisted on the possibility of interpreting the subharmonic 
disturbance development in the framework of the appropriately- 
modified   three-wave-resonance    theory   in all cases.  However   it will 
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be   shown  below  that  the   three-wave-resonance  approach   often leads 
to results which are very close to those given, e.g., by the  secondary- 
instability   theory,    which   presupposes    that   the   wave   modes   have 
amplitudes    of two   different   orders   of magnitude    (see   Fig. 5.16a). 
Note also that   in some  cases  the   secondary-instability    computation 
allows    the    derivation    of   the    required    results    to   be    simplified 
considerably.   Moreover,   the  secondary-instability    mechanism   seems 
to be the most appropriate   one in the widely-studied   cases where   a 
primary   plane  wave   of finite   amplitude   is produced   by  a vibrating 
ribbon   and  later   excites   some   secondary   waves   which   are   initially 
very weak. In addition, this mechanism   is important   in itself since it 
has    many     applications     to    problems     unrelated     to    three-wave 
resonances.   On the   other   hand,   Mankbadi    (1990,    1991,    1993a,b), 
Mankbadi   et al. (1993),   and  Wu (1993,   1995)   in their   approximate 
evaluation   of the  resonant   growth   rates   of two   symmetric    oblique 
waves   (with   frequencies    and   streamwise    wavenumbers    which   are 
close, but not necessary   equal,  to half of those   corresponding   to the 
2D wave of the triad)  used  quite  another   method   [based  on the idea 
that    the    dominant    part    of   the    nonlinear    wave    interactions     is 
concentrated    in   the   neighborhood    of  the   critical   layer;   for   more 
details   see the  end  of the  present   subsection,   printed   in small  type]. 
Apparently    this   new   method   could  in some   cases   replace   both   the 
resonant-triad    and  the   secondary-instability    methods,   but  its range 
of applicability   is not clear up to now  [cf. Healey  (1995a)].   Note also 
that   Jennings   et  al.  (1995)    considered    the   most   general   resonant 
triads   consisting  of three   oblique  waves   [recall  that  just  such  triads 
were   earlier   discussed   by  Raetz  (1959)   and   Stuart   (1962a,b)]   and 
showed   that  rapid   growth   of oblique-wave   amplitudes   is possible  in 
this case also. The paper by Jennings et al.   supplemented Zel'man  and 
Maslennikova's    results,    showing    that    the    three-wave     resonance 
mechanism    of  generation    and   development    of  three-dimensional 
structures     in   boundary     layers    has    a   much    wider    domain    of 
applicability  than was   assumed   in the  1970s;  however,   this does not 
exclude    the    possibility    that    other    mechanisms     may    also    play 
important    parts    in   some   cases    of   boundary    layer    transition    to 
turbulence   and   are   therefore  worth   studying. 

Let us also stress that the available experimental data relating 
to evolution of Blasius laminar boundary layers disturbed by a two- 
dimensional 'primary wave' (some of these data will be discussed in 
Sees. 5.3-5.5 below) definitely show that very different three- 
dimensional structures may appear in the course of this evolution. 
Therefore, it seems natural to suppose that there exist many 
different mechanisms  of generation  of such  structures.  Having this in 
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mind, and also recalling remarks above relating to the secondary- 
instability mechanism of generation of flow three-dimensionality, 
we will now pass to discussion of    this mechanism. 

The secondary-instability approach to development of flow 
instabilities is based on a simple two-stage model. The first stage 
consists of the growth of some relatively simple small disturbance in 
accordance with the linear hydrodynamic-stability theory considered 
in Chap. 2. When this 'primary disturbance' becomes strong enough, 
it becomes unstable with respect to some disturbances of a quite 
different form, and then the second stage of disturbance 
development begins. Recall that in Sec. 4.22 the secondary instability 
of the two-dimensional equilibrium disturbances of a plane Poiseuille 
flow was briefly discussed on p. 72, where also a number of 
references touching upon this subject was presented, while on pp. 
92-93 of the next subsection 4.23 even some tertiary and quaternary 
flow instabilities were mentioned, and a few references relating to 
such instabilities were indicated. Now we will consider a model 
where the superposition of some two-dimensional T-S wave of a 
finite amplitude A on the Blasius boundary-layer flow is considered 
as the 'primary flow', whose stability with respect to three- 
dimensional background ('environmental') waves of small 
amplitudes must be investigated. (For the sake of simplicity all 
amplitudes will now usually be assumed to be real and the possible 
effect of the   'phase mismatch'   will as  a rule   be ignored.)   Thus  here 

the 'primary flow' has the velocity \ x{x,z,t) = V(z) + A\x(z)ei(kx~at) 

where V(z) = {U(z),0,0} (and U(z) is the Blasius velocity profile at 
streamwise distance x, if the locally-plane-parallel model of the 
boundary-layer flow is used), while Vi(z) is the velocity profile of the 
selected T-S wave, normalized in a reasonable way, and A is its 
amplitude. (Normalization of the vector-function \\(z) 
{u(z),v(z),w(z)} is necessary to give meaning to the amplitude A. In 
particular, if \\(z) is normalized by the condition that ma.xzu(z)/U0 = 
1 where U0 is the free-stream velocity, then A measures the 
maximal streamwise velocity of the T-S wave as a fraction of U0.) 
Note also that the representation of Vi used here involves some 
other conventional approximations of the linear stability theory, 
excluding local parallelism; in particular, the velocity-profile 
distortion by disturbances is here neglected for both the steady 
Blasius boundary layer and the periodic T-S wave within it [for 
more details see Herbert's surveys (1988a,b)]. The primary flow with 
velocity Vi is disturbed by a 'secondary disturbance' of velocity 
\3(x,y,z,t) where   lv3l «IVJ. The last condition   makes   it possible   to 
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apply linear stability theory, i.e. to base the stability analysis on the 
N-S equations for the velocity field \x{x,z,t) + \3(x,y,z,t) linearized 
with respect'to the velocity and pressure (v3, p3) of the disturbance. 
Thus, in contrast to the theory of three-wave resonance, where the 
amplitudes of all three waves are assumed to be of the same order of 
smallness and the equations of motion are expanded into subsequent 
powers of all amplitudes, in the secondary-instability theory the 
amplitude A of the 2D wave is considered as a fixed finite parameter 
and only the amplitude of the supplementary 3D disturbance is 
assumed to be small. 

The papers of the 1980s on secondary instability of steady 
shear flows cited in Chap. 4 contain much material directly relating 
to the present topic [in fact this instability of laminar boundary 
layers was briefly discussed even earlier, by Görtier and Witting 
(1958) and Maseev (1968a,b)]. In solving the secondary-instability 
problem it is convenient to use, instead of a stationary frame, a 
frame moving in the Ox    direction with the phase velocity c   of the T- 

S wave having velocity Avi(z)e'fA:j:_öUj, i.e., to replace x by the 
variable x' = x-ct. In this frame the primary flow is independent of 
time and periodic in x, i.e., here V\{x,z,t) = Vi(*'z), where V\{x',z) = 
V^x'+A^z), Ax = 2n/k. Therefore, the frame transformation reduces 
the secondary-stability problem to the study of the linear stability of 
a steady but streamwise-periodic, locally plane-parallel flow. 
Numerical investigation of this linear stability problem for the plane- 
parallel model of a Blasius boundary-layer flow (and also for some 
other flows) was carried out, in particular, by Orszag and Patera 
(1983) who obtained some interesting new results which were later 
confirmed by other authors. However, a much more explicit study of 
the secondary instability of the primary flow considered here was 
accomplished by Herbert (1983b, 1984a, 1985, 1986, 1987, 1988a,b) 
[see also Herbert and Santos (1987), Herbert et al. (1987) and Crouch 
and Herbert (1993)]. Therefore, here the main attention will be given 
to this  work. 

Herbert used the fact that the linear stability analysis of steady 
periodic flow with respect to a small three-dimensional disturbance 
may be reduced to study of a Floquet system of linear differential 
equations with periodic coefficients. The main properties of such 
systems may be found, e.g., in Coddington and Levinson's textbook 
(1955); various applications of Floquet theory to hydrodynamic 
stability were considered, in particular, by Kelly (1967), Clever and 
Busse (1974), Davis (1976), Barkley and Henderson (1996), and 
Schulze    (1999)    [see   also   Craik   (1995)    and    references     therein]. 
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However, Floquet theory was primarily developed in relation to the 
study of nonlinear periodic oscillations, and therefore in fluid 
mechanics if was most often applied to investigations of stability of 
time-periodic primary flows. Since Herbert considered, instead of 
this, the case of spatially periodic primary flow, it is reasonable to 
present here  some details  of his method. 

The normal-mode concept, which was widely applied in Chap. 2 
to problems relating to the linear stability theory for steady non- 
periodic flows, may now be used in exactly the same form for 
description of the dependence of the disturbance on the variables y 
and t. Here it leads to the representation of the disturbance velocity 
vi(x',y,z,i) in the form of a superposition of modes depending on 
parameters   k2 and Ü    (and admitting separate study) of the form 

v3V,y,z,t) = eil**'\V,z). (5-12) 

As in Sec. 2.5, the spanwise wave number k2 may be assumed 
real (by virtue of the spanwise homogeneity of the primary flow), 
while (again exactly as in Chap. 2) the parameter Ü is generally 
complex: Q = Qr + iQv [Note that here I2r characterizes the frequency 
shift of the 3D disturbance with respect to the frequency co of the 
primary T-S wave; modes with Q{ - 0 travel with the primary flow of 
velocity \ i(x,z,t).] As to the dependence of v4(*'z) on the 
streamwise coordinate x\ the Floquet theory implies that it may be 
represented  in  the  form 

V4(JC',Z) = e^xsix'.z), (5.13) 

where y-yr + iy\ is a complex characteristic exponent of the problem 
and V5(JC'Z) is a periodic function of x'\ v5(x

7 +A^,z ) = VSCK'Z). The 
periodicity of V5(JC'Z) allows it to be expanded in a Fourier series and 
thus to obtain the following general form of the three-dimensional 
disturbance   \3(x',y,z,t)'- 

y3(x',y,z,t) = ^'+'^-""^vm(zy
mtoc',    -oo < m < ~ (5.14) 

ms 

where wave numbers k and k2 are real, and constants y and Q are 
complex. 

The additional complex parameter y leads to the appearance 
here  of new possible  forms  of disturbance.   Note first  of all that   the 
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values 7 and 7 + ink of this parameter, where n is an integer of 
either sign, lead to the same collections of functions (5.14), differing 
only in numbering of the Fourier coefficients. Therefore, it is possible 
to assume that -k/2 < 7 < kll. Moreover, it is also reasonable to 
subdivide the set of all disturbances of the form (5.14) into three 
classes  of more  special disturbance modes: 

a) Fundamental   modes, 7= 0. Here 

v3(x',y,z,f) = e^'^-^vjz)^,     -~ < m < ~. (5.14a) 
m 

b) Subharmonic   modes, ji= k/2.  Here 

v3(x',y,z,t) = ey'x'+i(kiy-n!)Jjvm(z)eimk>x\ kx = k/2, m=2n+l, -°° <«<-. (5.14b) 
m 

c) Detuned  modes, 0 < I 7 I < k/2. Here, if 2yjk = e, then  0 <e< 1 
and 

v3V,y,V) = er'*+i^y-a)JdvM)eiim+e)kl*M=k/2, m=2n, -~ <«<«,.      (5.14c) 
m 

The word "detuned" simply implies a streamwise wave number 
somewhere between the fundamental and the subharmonic modes. 
The terms corresponding to m = ±1 are the dominant ones on the 
right side of Eq. (5.14a) describing the 3D fundamental modes. These 
terms show that the primary 2D mode having the streamwise 
wavenumber k may excite resonant 3D waves with the same 
streamwise wavenumber (in the temporal presentation of the theory 
it means that a 2D wave of frequency co may excite 3D waves of the 
same frequency). This process is associated with the so-called 
primary resonance in a Floquet system. In Eq. (5.14b) the main 
terms are also those with m = ±1; they correspond to subharmonic 
3D modes having streamwise wavenumber kx = k/2 (or, in temporal 
presentation, to subharmonic modes of frequency co/2). The resonant 
excitation in a Floquet system of 3D waves with the streamwise 
wavenumber (or frequency) equal to half of the corresponding 
characteristic of the primary 2D wave represents a phenomenon 
which is often called the principal parametric resonance (the 
adjective 'parametric' is used because in many real physical systems 
the    primary     oscillation    of   frequency     co     represents     oscillatory 
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variations of some physical parameter affecting the system). Real 
detuned modes must include on the right-hand side of Eq. (5.14c) 
two complex-conjugate summands with opposite detuning 
parameters ±e . Herbert [in (1988a,b) and some other papers] called 
real detuned modes the combination modes; and said that they 
participate in the combination resonances [see Santos and Herbert 
(1986), Herbert and Santos (1987) and Herbert et al. (1987); cf. also 
the  surveys  by  Nayfeh  (1987a,b)]. 

As will be shown later, all the above-mentioned types of 
secondary-instability resonances can participate in the development 
of fluid-flow instability. However here only the evident similarity of 
the principal parametric resonance to Craik's three-wave resonance 
will be emphasized. This similarity makes the principal parametric 
resonance especially interesting for the analysis of boundary-layer 
instabilities. Note in this respect that resonances of such type occur 
also in many other physical systems. Apparently the first description 
of such phenomenon in scientific literature is due to Faraday (1831), 
who discovered that when a vessel containing liquid is made to 
vibrate vertically, some vibrations of the free surface of the liquid 
have a frequency equal to only half of that of the vessel. This 
seemingly unusual Faraday resonance (or Faraday waves, Faraday 
instability) attracted much attention and was later studied by many 
authors both theoretically and experimentally [in particular, Rayleigh 
(1883a,b) participated in both kinds of studies]. Nevertheless, a 
satisfactory theory of this resonance was developed only in the 
second half of the 20th century and its study is not yet complete; see, 
e.g., the papers by Benjamin and Ursell (1954), Miles (1984, 1993), 
Guthart and Wu (1994), Friedel et al. (1995), Wright et al. (2000), 
and the survey by Miles and Henderson (1990) containing many 
supplementary references [cf. also the paper by Schulze (1999) 
indicating some conditions under which the principal parametric 
resonance  cannot  occur]. 

Let us now return to a description of Herbert's work. The 
imaginary part QT of the parameter Q. determines the time growth of 
the 3D-disturbance amplitude, which is proportional to exp(ß;0- 
However, this is correct only for amplitudes at fixed points of the 
frame of reference moving with velocity c, while amplitudes at fixed 
points x of the stationary frame will be proportional to \exp[-iüt 
+ y(x-ct)]\ = exp(yr;t)exp[(.Qi-7rc)£]. Models of purely temporal growth of 
disturbances (which were the main objects of investigation in all 
early theoretical studies and continue to be widely studied up to 
now; see, e.g., Sec. 2.92)  correspond   to assumption   that   yt = 0, while 
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purely    spatial    growth    in   the    laboratory     frame    corresponds     to 
condition Q{ =yTc. 

Substitution    of   the    above    expressions    for   the    disturbance 
modes   (5.14a,b,c)  (assumed   to be real) into linearized   N-S equations 
for the  velocity   disturbances   leads   to    infinite   systems   of coupled 
linear   differential    equations    for   the   functions    vm(z).  A  numerical 
solution may be obtained   if the Fourier  series  are truncated,   making 
the  infinite   systems   finite.   Numerical   studies   by   Herbert   (1984a,b, 
1985,    1986,    1988b),    Herbert    and   Santos    (1987),    Herbert   et   al. 
(1987),   and  Crouch  and   Herbert   (1993)   [see  also  Herbert's   survey 
(1988a)]   showed   that    reasonable    accuracy   may   be  achieved   even 
when truncation is very  severe - in the case  of subharmonic modes  it 
is often enough  to preserve   only the terms   with m = -1 and  m = 1, 
while for fundamental  modes  the  truncation  of all terms   with  Ira I > 1 
(i.e., inclusion in the analysis   only the  terms   with  ra =-1, 0 and   1) 
gives   in many   cases   satisfactory   accuracy.   [This   conclusion,   which 
confirms   the   above   statements    about   the   dominant    terms    of Eqs. 
(5.14a,b)    agrees    also   with    the    results    of   subsequent    numerical 
investigations    of Blasius   boundary-layer     secondary    instability    by 
Wang  and  Zhao (1992)   and  Ustinov   (1994)].   The  resulting   systems 
depend   on the  boundary-layer    and  primary-wave    velocity   profiles 
U(z) and   \i(z)  and   include   parameters    A,  k,  co,    k2,  yx,  J\, Q, A, 
characterizing  the  primary  T-S   wave,   and  3D  disturbances  interacting 
with   this   wave.   (Strictly   speaking,   co   takes   a complex   value   if the 
primary   T-S wave  is not neutral,   while   if spatial,   and   not  temporal, 
development   of disturbances   is considered,   then   co is   real but k    is 
complex.  However,  we will follow Herbert   and   assume   that   the  T-S 
wave   varies   slowly   in  comparison    with   the   3D  disturbance,    and 
hence   the  T-S amplitude   A may  be  assumed   to be locally  constant 
and   both   parameters    co   and   k will  be  real.   More   general   models 
where   k   or co  may be complex were  considered   by Wang and  Zhao 
(1992)   but   will  not   be   discussed   here.)   Parameters    A, k     and   co 
characterize    the   primary    T-S  wave    and   may   be   assumed    to   be 
known; as to the other  parameters   mentioned,   the majority   can take 
any values,   which  may  be chosen   on the  basis   of available   data   or 
physical   arguments.    This,  however,   is not  true   for  all parameters, 
since, as in the case of the Orr-Sommerfeld   equation,   the  systems   of 
equations   for functions    vB(z) with   appropriate   boundary    conditions 
define   eigenvalue   problems   -  their   solutions   exist   only   for  special 
values   of some   of the   parameters    ('eigenvalues'    of  the   problem, 
which  depend   on the  chosen  values   of the  other   parameters).    And, 
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exactly as in the case of the O-S equation (where the eigenvalues are 
the real and imaginary parts of co or, if a spatial formulation of the 
stability problem is used, of k), only two of the above real 
parameters must be treated here as eigenvalues determined by the 
requirement of solubility of the system. Note also that in the case of 
the spanwise wavenumber k2 it is natural to suppose that the value 
to which the highest growth rate of the wave amplitude corresponds 
should be just the wavenumber that is most likely to appear in 
experiments. This assumption [which is entirely similar to that used 
in the linear stability theory for determination of the value of k in 
the O-S equation- (2.44)] provides a criterion for determination of the 
preferred spanwise periodicity. Some of the results obtained in this 
way will be considered, together with the appropriate experimental 
and numerically-simulated data, in Sec. 5.4 of this chapter. It will be 
also shown there that numerical solutions of the amplitude equations 
for resonant waves in a boundary layer, and for the disturbance 
modes (5.14a,b,c) of its secondary instability, allows many 
observable characteristics of the boundary-layer instability to be 
determined, yielding information about the most appropriate 
instability models and values of the corresponding parameters. As 
will be seen, in spite of the essential differences between resonance 
and        secondary-instability mechanisms, the quantitative 
consequences of the two theories sometimes (though not always) 
lead to results which are very close to each other. Note in this respect 
that both theories were independently proposed at a time when 
almost no reliable data existed for comparison with theoretical 
predictions. In the case of the secondary-instability theory the early 
(and nowadays rarely cited) papers by Görtier and Witting (1958) 
and Maseev (1968a,b) are worth mentioning in this respect. It is 
curious to note that both the German authors and the Russian one (in 
the first of his two papers) independently chose practically the same 
title, which was later used also by Herbert (1988a). Herbert noted in 
this paper that Maseev's papers (the first being published in Russian 
in a small-circulation collection of papers written by lecturers from a 
Moscow engineering college, while the second was translated into 
English but is very short and not entirely clear) apparently contained 
some new, nontrivial correct ideas about the role of the secondary 
instability in boundary-layer transition to turbulence (in fact, these 
ideas had something in common with the contents of the earlier 
paper by Görtier and Witting). In particular, Maseev gave, without 
explicit proof, some reasonable estimates of the threshold amplitudes 
of the  2D wave   needed   for  the   generation   of three-dimensionality 
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with a given spanwise wavenumber k2 (see Fig. 5.4) [the estimates 
are compatible with the data of Klebanoff et al. (1962)]. A similar 
schematic graph was given by Görtier and Witting who did not 
indicate scales but stated that their graph agrees with the 
experimental   data  of  Schubauer  (1958). 

Let us say now a few words about the papers of Mankbadi (1990, 1991, 
1993a) and some related work. In the 1990 and 1991 papers Mankbadi 
considered fully-resonant triads, where all waves have small amplitudes and 
the same phase velocity c. For these conditions he analyzed the role of the 
critical layer, where U(z) = c, in triad development. He found that the main 
contribution to the growth rates of wave amplitudes is due to wave interactions 
in the neighborhood of the critical layer, and at large values of Re this 
neighborhood is the only flow region where nonlinearity strongly affects the 
wave dynamics. Therefore Mankbadi used the linearized N-S equations both 
below and above the narrow sublayer where U(z) = c matching then their 
solutions with the nonlinear-equation solution for the singled out sublayer. I n 
Mankbadi (1993a) a more general triad was considered, in which frequencies 
and streamwise wave numbers of oblique waves were close, but not necessarily 
equal, to half those of the 2D wave. According to Mankbadi, in this case too the 
oblique- and plane-wave growth rates G0 and Gp at large values of Re are 
determined with high accuracy by the contributions of the neighborhood of 
the critical layers (which in this case are clearly close to each other for all 
three waves). Based on this, Mankbadi carried out an asymptotic evaluation of 
the growth rates, and found that if the initial amplitude of the plane wave is 
much greater than the oblique-wave amplitudes and Re is large enough, then 
G0» Gp and oblique waves with quite different spanwise wavenumbers /c2can 
grow rapidly extracting energy very efficiently from the undisturbed flow 
(i.e. a three-wave resonance of some sort takes place for a wide range of k2- 
values, and the plane wave then plays the role of a catalyst stimulating growth 
of oblique waves). The positive growth rates G0 depend on the plane-wave 
amplitude and the values of Re* and k2; hence fc2pr = fc2,pr< (A,Re*) where &2pr is 
the preferred value of k2 corresponding to the maximal value of G0. 
Dependencies of G0 on A, Re* and k2, and of k2pi on A and Re*, computed by 
Mankbadi were in good agreement with the available experimental and 
numerical data (see Figs. 5.15a,b in Sec. 5.4). This agreement clearly increases 
confidence in Mankbadi's results but since the problems solved by him are 
quite involved, a supplementary check of all his arguments remains desirable. 

A more complicated asymptotic theory of the spatial development of 
resonant triads in a Blasius boundary layer at large values of Re was developed 
by Mankbadi et al. (1993). Here the wave triads considered included one plane 
wave and a pair of symmetric oblique waves, having frequencies co and co/2 
and streamwise wave numbers k and kx = k/2, respectively. [Such triads were 
also analyzed, by a quite different method, by Zel'man and Maslennikova 
(1993a); the interest of theoreticians in them was stimulated by papers b y 
Corke and Mangano (1988,1889) describing experimental investigations of 
development of such wave triads in a boundary layer.] Since the value of kx 

could   vary,   the   spanwise    wavenumbers    ±k2 and   the   inclination    angles    012 = 

±tan-'(k2/k,) could also take different values. Mankbadi et al. estimated the 
wave growth rates G0 and Gp by a somewhat refined method of critical-layer 
analysis   which    took  into   account   the   nonlinear    critical-layer    effects   which 
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lead to the appearance, in the amplitude equations, of nonlinear integral 
terms which account for the influence of the upstream wave history. Their 
main attention -was paid to the case where the plane wave is linearly unstable 
while the oblique waves are linearly stable (i.e., decaying according to the 
linear stability theory), and where amplitudes of all three waves are small but 
the initial amplitudes of the oblique waves are much smaller than that of the 
plane wave. It was shown that at first the plane wave causes fast growth of 
oblique waves while the plane wave itself continues growing for some time at 
a rate close to that given by the linear stability theory (this growth rate is 
much smaller than the simultaneous growth rates of the oblique waves). Later, 
when amplitudes of the oblique waves become considerably greater than the 
plane-wave amplitude, nonlinearity begins to affect the evolution of the plane 
wave as well. At this stage the self-interaction of oblique waves becomes 
important and considerably changes the law of their growth, leading to 
oscillations of their growth rates, at first around their earlier high growth 
rate and then around the zero growth rate corresponding to the final 
saturation stage. These conclusions agree with some experimental results b y 
Corke and Mangano (1988, 1989) (for more information about their work see 
Sec. 5.3) but in general there are not enough data to confirm the results; 
moreover, it was noted by Healey (1995) that the assumptions used by 
Mankbadi et al. may be valid only at unrealistically large Reynolds numbers. 
Some results supplementing those discussed here were presented, i n 
particular, by Goldstein (1994, 1995) and Wu (1995) but we have no space to 
discuss   them   here. 

5.3.   K AND N REGIMES OF INSTABILITY DEVELOPMENT IN 
BOUNDARY LAYERS; EXPERIMENTAL STUDIES OF THE N REGIME 

Experimental data which could be compared with the weakly- 
nonlinear theories considered above appeared only relatively 
recently. Therefore, it is no wonder that for some time these theories 
did not attract much attention. Recall that at the beginning of Sec. 5.2 
the classical papers of Schubauer and Klebanoff (1956), Klebanoff 
and Tidstrom (1959) and Klebanoff et al. (1962) were cited as the 
primary source of experimental information about the nonlinear 
development of 3D wave disturbances in boundary-layer flows. In 
particular, the last-named has for many years been referred to very 
frequently by experts in the flow-stability theory. However, it has 
already been mentioned that the experimental data contained in 
these papers agreed only qualitatively with the early theoretical 
models by Benney and Lin (1960) and Benney (1961, 1964) of the 
two-mode disturbance development. The point is that in these 
theoretical papers it was assumed that two-dimensional and three- 
dimensional modes have the same frequency, while according to the 
results of Klebanoff and his co-authors this is not the case. However, 
these results disagree even more strongly with Craik's model of a 
resonant-triad   interaction,   where   the frequency   (0\ of the two three - 
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dimensional waves is taken equal to one-half of the frequency co of 
the two-dimensional wave. Klebanoff and his co-workers studied the 
development of disturbances produced by a vibrating ribbon in a 
flat-plate boundary layer and found three-dimensional flow 
oscillations, but their frequency coi differed only slightly from the 
fundamental frequency co0 of ribbon oscillations and of the 2D wave 
produced by it. These 3D oscillations appeared at relatively small 
values of x (i.e., soon after the origin of the 2D wave) and later, at 
larger values of x, these regular oscillations were transformed into 
irregular bursts of high-frequency fluctuations (so-called 'spikes'; see 
Fig. 5.21 in the beginning of Sec. 5.5) which preceded the formation 
of turbulent spots and final transition to turbulence (cf. the short 
description of boundary-layer instability in Sec. 2.1; for more 
detailed characterization of the boundary-layer instability 
considered here see again Sec. 5.5). However, no subharmonic waves 
with half the fundamental frequency were found in these 
experiments. 

It is now clear that these experimental results did not prove 
the incorrectness of Craik's model but only showed that the nonlinear 
development of boundary-layer disturbances observed by Klebanoff 
et al. was not due to Craik's resonance mechanism. Note in. this 
respect that Morkovin and Reshotko (1990) reasonably remarked 
that even in the cases of similar flow geometries and initial velocity 
fields there is no universality in the instability and transition 
process; because of the wide variety of external-flow disturbances 
feeding this process, and the large number of permissible nonlinear 
developments of them there is a great variety of possible behavior. 
This remark [which in a less definite form was also stated by Herbert 
and Morkovin (1980) and was often repeated by later authors; 
Shaikh and Gaster's paper (1994) is just a typical example] describes 
excellently the conclusion following from numerous experimental 
results collected during the whole 20th century. So it may also 
explain quite convincingly the reason for the deviation of Klebanoff s 
experimental results  from the predictions  of Craik's  theory. 

For a number of years after Craik's theory of 1971, no 
subharmonic disturbances of frequency co0/2 were observed in 
boundary layers where a two-dimensional 'fundamental wave' of 
frequency (OQ was generated by some means [although two- 
dimensional subharmonics of the 'fundamental frequency' co0 were 
repeatedly found in mixing layers with antisymmetric velocity 
profiles, e.g., by Sato (1959), Browand (1966) and Miksad (1972), 
and  also  in plane   and   circular  jets   -  see,  e.g., Wehrmann    and  Wille 
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(1958)]. Therefore, it was usually assumed during these years that 
Craik's theory was inapplicable to real boundary-layer instabilities. 
Apparently the first work in which it was shown that subharmonic 
waves of frequency (0\ = coQ/2 do indeed sometimes appear in a 
constant-pressure boundary layer perturbed by a ribbon vibrating 
with the frequency co0 (corresponding, at a given value of Re, to a 2D 
wave unstable according to the linear stability theory) was that of 
Kachanov, Kozlov and Levchenko (1977) in Novosibirsk, Russia. These 
authors made hot-wire anemometer measurements of the 
streamwise velocity fluctuations u(x,y,z,t) [the deviations of 
instantaneous streamwise velocities from the undisturbed velocity 
U(z)] in a ribbon-excited boundary layer. Then they determined 
normalized amplitudes A = u'/U0 of these fluctuations (where, as 
above, u' is the appropriately defined1 real amplitude of u- 
fluctuations and U0 is the free-stream velocity; note that in the 
experiments of Kachanov et al. the initial values of A were much 
smaller than in the experiments of Klebanoff et al). Kachanov et al. 
measured the frequency spectra Pu(f) (where / = a>/2n is the 
frequency measured in Hz) of the streamwise-velocity fluctuations 
u(t) (describing the spectral composition of these fluctuations) at 
various points (JC, y, z). They found that, together with the main 
spectral peak at the frequency /„ of ribbon oscillations and higher 
harmonics of frequencies 2/0 and 3/0 (which are typical for any 
nonlinear wave development and were seen almost everywhere in 
the flow), velocity fluctuations with frequencies much below /0 

were also observed at large enough values of x. Moreover, at such 
values of x subharmonic fluctuations of frequency fx = foil were also 
detected at all points of observation (as a typical example see Fig. 
5.5a, where peaks at frequencies 2/0 and 3/0/2 are produced by 
nonlinear interactions of the primary wave of frequency fQ with itself 
and with the subharmonic of frequency /0/2, and where peaks at 3/0 

and 5/o/2 are due to interactions of the same primary wave and its 
subharmonic with the second harmonic). Another example of the 
same type is shown in Fig. 5.5b, taken from the paper by Kachanov 
and Levchenko (1984); here a relatively wide low-frequency range 
of amplitude fluctuations with a peak at / = /0/2 is seen at both 
values   of x   and /0. The appearance   of   subharmonic   fluctuations   in 

1   It   is   often   convenient  to   define   the   fluctuation   amplitude   as   the   root-mean- 
square  value  (i.e.,   as   the  square  root  of the  temporal  mean   value  of squared 
fluctuations).   Such   definition   is   widely   used,   in   particular,   in   studies   of 
turbulent    flows. 
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the experiments by Kachanov et al. (1977) coincided with the onset 
of three-dimensionality, producing appreciable spanwise variations 
of flow characteristics. These results strongly suggested to the 
authors that Craik's three-wave resonance took place at the 
corresponding values of i. 

The results found by Kachanov et al. in 1977 were later 
confirmed, supplemented by many details, and expounded in 
research papers and surveys both by members of the Novosibirsk 
group [see, e.g., Kachanov et al. (1978, 1980, 1982), Kachanov and 
Levchenko (1982, 1984), Kachanov (1987, 1994a,b), Boiko et al. 
(1999)] and by other scientists, partially in collaboration with those 
from this group [see, e.g., Thomas and Saric (1981), Saric et al. 
(1981), Saric and Thomas (1984), Santos and Herbert (1986), Thomas 
(1987)', Yan et al. (1988), Corke and Mangano (1988, 1989), Corke 
(1989 ' 1990 1995) Saric, Kozlov and Levchenko (1984), Kozlov, 
Levchenko and Saric (1984), and Bake et al. (1996, 2000)]. It was 
also noted by Saric and Thomas (1984) and Herbert (1988a) that 
some related results (which will be described later) had been 
observed in early flow-visualization studies by Knapp and Roache 
(1968)  which did not attract much attention at the time. 

Comparison of the results   of the above-mentioned   papers   with 
those   found   by   Klebanoff   and   his   co-workers    clearly   shows   that 
there exist at least two different   routes   of boundary-layer   transition 
to turbulence. The first of these  transition   regimes,  whose  study   was 
initiated by Klebanoff's work, usually   corresponds   to relatively   large 
initial    amplitude    of   a   two-dimensional     wave    disturbance     (with 
values of u'/U0  of the order of 1% or more, where u'is the  amplitude 
of streamwise-velocity    fluctuations    at   the   distance    from   the   wall 
where   this  amplitude   is a maximum).   Herbert   and  Morkovin   (1980) 
proposed   to  call this   regime   the   K-Regime      (for   Klebanoff);   their 
proposition was widely accepted and will be used in this book too. As 
was indicated   earlier,   the K-regime  includes   the formation   of three- 
dimensional    structures    leading    to   appearance    of  bursts    of high- 
frequency    fluctuations    which   are   later   transformed    into   separate 
turbulent spots;     these spots multiply  and grow with time, then  start 
merging   with   each   other,   and   finally   occupy   the   whole   boundary 
layer. Only the first stage of this regime  was studied   by Klebanoff e t 
al. (1962)   and  only  this  regime   was  briefly   considered   in  Sec. 2.1. 
The  second   regime,   discovered   in  experiments    of the   Novosibirsk 
group,   is  often   called   the   N-Regime  [see,   e.g.,   Kachanov's   survey 
papers   (1987,   1994a,b)],   and below  we will normally   use this name. 
(Other names' found  in the literature   are    Subharmonic   Regime   and 
S-Regime;    these     names     stress     the     importance      here     of    the 
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subharmonic resonance.) The N-regime of disturbance development 
does not lead to the appearance of 'turbulent spots' (localized regions 
of very strong fluctuations), and usually occurs only under some 
special initial conditions (in particular, at initial values of U'/UQ 

appreciably smaller than 1%) and is rarely realized in natural and 
engineering flows (therefore, it was not mentioned in Sec. 2.1). In 
particular, the emergence of the N-regime requires that the 
boundary layer contains a two-dimensional T-S wave with rather 
small initial amplitude U'/UQ [but not smaller than about 0.3%; this 
last condition was first mentioned in qualitative form by Görtier and 
Witting (1958), was independently presented, together with the 
quantitative (but numerically incorrect) Fig. 5.4 by Maseev (1968a,b) 
and later was proved by different theoretical methods by Orszag and 
Patera (1983), Herbert (1984a, 1985, 1988a) and Zel'man and 
Maslennikova (1984, 1993a)]. According to many authors, the N- 
regime may begin either with a nonlinear wave resonance of Craik's 
type or with a secondary-instability phenomenon. Saric and Thomas 
(1984), who found that the spanwise periodicity and the character of 
the observed nonlinear wave development can depend on the initial 
value of U'/UQ, even recommended distinguishing these two origins of 
boundary-layer three-dimensionality by introducing the attributes 
'C-type' (for Craik) and 'H-type' (for Herbert) (the data motivating 
their proposal will be considered later). However, later it was shown 
that the nonlinear resonance may have many different forms, and 
often it cannot easily be distinguished from the secondary-instability 
development   of  flow   disturbances. 

Before the detailed consideration (in this and the next sections) of the 
results relating to the N-regime of disturbance development in a boundary 
layer and then (in Sec. 5.5) of the main features of the K-regime, it is worth 
making some general remarks about this subject. Note that both the regimes 
were discovered in experiments where a ribbon vibrating with a constant 
angular frequency co was used to generate the primary disturbance. Hence, 
we consider here only the so-called 'normal transition scenarios', which 
begin with the emergence in the flow of a linearly-unstable (or linearly- 
stable but transiently growing) Tollmien-Schlichting wave. However, it was 
noted in Chap. 2 (Sec. 2.92, p. 118) that both in laboratory experiments and in 
real life external-stream disturbances can be large enough for 'by-pass 
transition' to occur, with no observable small-amplitude T-S waves at the 
beginning  of the     process  as  in     'normal  transition'   . 

In fact, the N-regime of disturbance development can really occur only 
in cases of rather low levels of external disturbances (of background o r 
environmental origin). In such cases it is often even unimportant whether 
only one periodic T-S wave or a more complicated disturbance appears first. It 
will be explained below that even in the case of a single primary plane wave 
the  N-regime   development   quickly   leads  to a disturbance    spectrum    of rather 
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complicated form. The K-regime corresponds to the cases of boundary layers 
with a higher level of external disturbances; here also the primary 
disturbance may not necessarily have the form of a single T-S wave. Usually 
the K-regime leads to the scenario of transition to turbulence through the 
stage of 'turbulent spots' (see Sec. 2.1); therefore, the final stages of the K- 
regime may also be realized in 'by-pass transition'. Note also that when the N- 
regime of boundary-layer evolution develops without further disturbance for 
a long enough time, it may gradually acquire some features of the K-regime; 
see in this respect the discussion of papers by Bake et al. (1996, 2000) at the end 
of this section and in Sec. 5.5. 

Let us now consider at greater length the data relating to the 
first stage of the N-regime. Kachanov et al. (1977) in their 
experiments showed only that an appreciable subharmonic 
component of velocity fluctuations with frequency fx =/0/2 appeared 
simultaneously with the onset of flow three-dimensionality. This 
observation gave reason to suggest that Craik's three-wave 
resonance may have been present but, of course, it could not be 
considered as a proof of such resonance. Therefore a much more 
detailed study of the instability phenomenon observed in 1977 was 
carried out by Kachanov and Levchenko (1982, 1984). Here 
frequency spectra of streamwise velocity fluctuations in the 
constant-pressure boundary layer [identical to that studied by 
Kachanov et al. (1977)] were measured at a number of distances x 
from the plate leading edge and heights z above the plate (one of the 
results obtained is shown in Fig. 5.5b). Then narrow-band frequency 
filters were used to isolate (a) the 'primary wave' of velocity 
fluctuations produced by ribbon vibrations of frequency fQ, and (b) 
the subharmonic waves of half that frequency. The phases 0 and 
streamwise wavenumbers kx of the primary and subharmonic waves 
were measured, and it was shown that the phase synchronism 
required for resonance (usually reducing to the condition 01)O = 02,o + 
03>o, where 0iiO is the initial phase of the ith wave, and / = 1 for the 
primary wave) actually occurred, and that the resonance condition 
k\ = k/2 of Eqs. (5.7) was satisfied with high accuracy. It was also 
found that the amplitude of the subharmonic wave of frequency f0/ 2 
grew rapidly with x (from the viewpoint of a fluid element, with 
time t measured from the moment of wave excitation by the 
vibrating ribbon) over a considerable range of x, while the 
amplitude of the primary wave changed only a little in this range 
(see Fig. 5.6, and also Fig. 5.3 which shows some subsequent results 
relating to more general initial conditions). All this supports very 
convincingly the  suggestion by  Kachanov  et al. (1977) that the  three- 
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wave resonance predicted by Craik was really observed in their 
experiments. 

Kachanov and Levchenko also measured the spanwise 
distributions of the amplitude and phase for both the primary wave 
and the subharmonics; one typical result of such measurements is 
shown in Fig. 5.7. These measurements confirmed that the primary 
wave is two-dimensional, while the subharmonic of frequency /0/2 
is three-dimensional and the dependence of its amplitude on y is 
close to that of the function Bcos(k2y) (corresponding to a pair of 
symmetric oblique waves with spanwise wavenumbers ±£2), where B 
depends on x and z (and also on the frequency f0 of the primary 
wave). Experimental data of the type presented in Fig. 5.7 were used 
by  Kachanov  and  Levchenko  to  determine  the  spanwise  wavenumber 

k2 and the angles 0li2 = ±tan_1(/r2/^i) between the propagation 
directions of the plane 2D wave and of the two subharmonic oblique 
waves. According to the results obtained, I 01>2I = 63-64° in the main 
part of the region where strong three-wave resonance was observed. 
These values differ from the theoretical estimate I01)2l = 50° obtained 
by Volodin and Zel'man in 1978 (when there were no experimental 
data to compare with predictions) for a version of Craik's three- 
wave-resonance model of disturbance development. However, 
Kachanov and Levchenko did not pay too much attention to this 
discrepancy, which did not shake their confidence in the discovery of 
Craik's resonant structure. Subsequent theoretical studies, which will 
be considered later, showed that Kachanov and Levchenko were 
right, since Volodin and Zel'man's estimate of the angle I01>2l was 
based  on  an  oversimplification  of the problem. 

Kachanov and Levchenko's data also included the measured 
values of vertical (z-wise, normal-to-wall) profiles of the real 
amplitude \A\ and the phase <p (where \A\e1^ = A is the complex 
amplitude2) for both the primary 2D wave and its subharmonics of 
half the primary frequency. The profile measurements were made in 
the flow region where strong resonant interactions take place among 
waves of these two types. Results obtained for amplitude A{z) and 
phase 0(z) of the primary-wave streamwise velocity fluctuations 
u(x,z,t) = A(z)exp[*{fcc-o>f+0(z)}] were found to be very close to the 
corresponding conclusions of linear stability theory relating to the 
two-dimensional   T-S wave   considered.   As to the  measured   vertical 

2 Below   in   this   chapter,   in  cases   where  complex   amplitude   is  not  considered, 
the  real  amplitude   LAI will    usually be denoted as A. 
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profile of subharmonic-wave real amplitude A, its accuracy was also 
confirmed by, Corke and Mangano's (1989) measurements, which will 
be considered slightly later. It will be also noted later in this section 
that, according to the experimental results of Corke and Mangano 
(1989) and Corke (1995), the vertical profile of subharmonic-wave 
amplitude found by Kachanov and Levchenko is close to the profiles 
corresponding to subharmonic waves entering more general resonant 
triads, which satisfy the resonant conditions (5.7) not exactly but 
only approximately. Moreover, in the survey (1994a) Kachanov 
compared vertical profiles of the subharmonic-wave amplitude and 
phase presented in Kachanov and Levchenko (1982, 1984) with some 
theoretical and numerically-simulated estimates of these profiles, 
and showed that the experimental data agree excellently with these 
estimates. [For more details see Figs. 5.16a,b in Sec. 5.4 and the text 
there relating to these figures (including that printed in small type).] 

Continuing the consideration of experimental data relating to 
the N-regime of nonlinear disturbance development in boundary- 
layer flow, we note the visualization studies of boundary-layer 
instabilities carried out in the early 1980s by Saric and his co- 
authors [who in fact began with independent repetition of the early 
observations by Knapp and Roache (1968) which long remained 
unknown to the majority of scientists]. These studies showed that 
three-dimensional vortical structures, which appear in the Blasius 
boundary layer in the course of nonlinear development of an initially 
two-dimensional Tollmien-Schlichting wave, differ considerably in 
the cases of the K-regime and the N-regime of laminar-flow 
breakdown. In both cases nonlinear effects produce some regular 
process of distortion of the primary 2D wave into three-dimensional 
vortices reminiscent of the Greek letter A, with tips directed 
downstream (so-called 'A-vortices'). In the case of the K-regime, 
these vortices form an ordered vortical structure of peak-valley 
splitting in which the successive peaks are spatially in phase and 
follow regularly behind one another (see a typical flow-visualization 
picture in Fig 5.8a). On the other hand, in the case of the N-regime 
the structure consists of spanwise rows of A-vortices where 
successive rows are out of phase and the peaks of one row are 
aligned with the valleys in the next row (see Fig. 5.8b). Just such a 
'staggered vortical structure' was first observed in visualizations of 
disturbed boundary-layer flow by Knapp and Roache (1968); this 
structure clearly corresponds to twice the streamwise wave length 
(i.e., half the wave number) of the ordered K-regime structures in 
Fig. 5.8a. Later,   structures   of both  types   were   independently    found 
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and  described   by Thomas   and  Saric (1981)   and   Saric  et  al. (1981) 
who   applied    to   boundary-layer     flows   the   technique    of   air-flow 
visualization' by   smoke    developed    by   Corke   et   al.  (1977).    More 
detailed    analysis    of  the   data    of   Saric   and    his   co-workers    was 
presented   by Saric and Thomas  (1984),   Saric et al. (1984),   Kozlov et 
al.  (1984),    Craik   (1985),    Thomas   (1987),   Herbert    et   al.   (1987), 
Herbert    (1988a,b),    and    Nayfeh    (1987a,b);    in   these    publications 
numerous    flow-visualization    pictures    were   presented    (Figs.   5.8a,b 
represent   just   one   such   example).   The   first   high-quality    pictures 
were    published    by   Saric    and    Thomas    (1984),    who    used    flow 
visualization   to observe   the nonlinear   wave   development   in a zero- 
pressure-gradient  boundary   layer  disturbed  by   a  vibrating  ribbon,   at 
different   values   of the disturbance   level u'/Uo   (where,   as above, u', 
observed   not far from the ribbon,  is the maximum   with respect  to z 
of  the    amplitude    of   the    streamwise-velocity     oscillations    in   the 
excited plane T-S wave, and U0   is the free-stream   velocity).  At u'/U0 

=   0.7%,   Saric    and    Thomas    found    the    usual    K-type    nonlinear 
development    which   was   earlier   observed   by   Schubauer,   Klebanoff 
and his co-authors,   and  a number   of other   experimenters.    However, 
for u'/Uo <0.5% the  character   of the  picture   changed,   and instead   of 
an ordered   peak-valley   vortical   structure    corresponding   to  that   in 
Fig. 5.8a  a staggered   structure   of the  type   shown   in Fig. 5.8b   was 
observed.     Moreover,    Saric    and    Thomas    also    found    that    some 
important   details   of the   staggered   structure   depended    critically   on 
the  initial  value   of u'/U0.   At u'/Uo = 0.3% they   obtained   a picture 
which  agreed   excellently   with   Craik's fully-resonant   triad:   here   the 
angular   frequency   of the   3D oblique   waves   was   equal   to  a/2,  with 
high precision,  and the  streamwise   wavenumber    of these   waves   was 
practically   equal   to  k/2,   where   k  is the   wavenumber    of the   two- 
dimensional   T-S wave  excited by the  vibrating   ribbon.   At the   same 
time,   the   spanwise  wavenumber  k2 of oblique 3D waves found at this 
value  of u'/Uo   agreed   well with  the  value   given by the   general   O-S 
equation    (2.41)    for   a   three-dimensional     T-S   wave    with    angular 
frequency   a/2  (the   angular   frequency   of ribbon   oscillations   is now 
denoted   by a) and  streamwise   wavenumber    k/2,   while  the  vertical 
profile   of the   3D-wave   amplitude    u3'(z)  measured    by   a  hot-wire 
anemometer    agreed   with   amplitude    calculations   based   on   Craik's 
(1971)      resonant-triad       theory.      However,      at     slightly      higher 
disturbance    level,   u'/U0 = 0.4%, the   value   of  k2   given   by   flow- 
visualization data was more than twice as large as that corresponding 
to  a three-dimensional T-S  wave with frequency  a/2 and streamwise 
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wavenumber k/2. The results of Saric et al. (1984) also showed that 
spanwise periodicity of the 3D structures depended very 
significantly on the disturbance level. These results, which have 
already been mentioned in Sec. 5.2 (see p. 28), clearly showed that 
the observed vortical structure could not always be due to the simple 
Craik mechanism of three-wave resonance, which has the same form 
at any value of the 2D-wave amplitude. 

Important   subsequent   experimental   studies   of the N-regime  of 
wave  development   in Blasius boundary-layer   flow were   carried   out 
by Corke and Mangano  (1988,   1989),   Corke (1989,   1990,   1995),   and 
Bake et al. (1996,   2000).   These   authors   produced   controlled   wave 
disturbances   in a boundary   layer   by means   other   than   the  old but 
still-popular    vibrating    ribbon.   In   particular,    Corke   and   his   group 
used   the   method   proposed   by   Liepmann    et  al. (1982)    and   then 
refined    by   Robey   (1987).   Instead    of the   usual   vibrating    ribbon, 
Liepmann   et al. used   a heating   wire,  placed  in the  initial  part   of a 
water  boundary   layer  and excited  electrically   to give a temperature 
varying   periodically   with   given   frequency   / =  (ö/2K.  They   used   a 
single   wire   which   was   stretched   spanwise   from   wall  to wall  of the 
test rig; since wire-temperature    variations   generate   local changes   of 
flow viscosity (and local buoyancy forces), the spanwise   heating  wire 
excites  a 2D wave  of frequency  / in the  flow. Robey noted   that  this 
technique lends itself to 3D forcing  since the  heater   geometry   can be 
prescribed    arbitrarily.    He  used    a  heater    array    consisting    of   3 2 
rectangular   surface   elements   separated   by narrow   gaps.  In Robey's 
experiments,   individual   elements   were   aligned  in a single  spanwise 
row, but by varying   the  distribution   of the   phase   and/or   amplitude 
of the  temperature  fluctuations  across  the  span  of the  array   he could 
produce    many    different    3D   disturbances.     In   the   experiments     of 
Corke's group,  this method was applied to the air boundary layer in  a 
wind    tunnel    where    a   single    heating     wire,    whose    temperature 
fluctuated  with  frequency /, was supplemented   by a spanwise   array, 
at  a fixed  x-location   close  to  that   of the   first   wire,   of individual 
heating   segments   of fixed   spanwise    length   s,  again   separated    by 
narrow   gaps.   The  temperature    of the   heating    segments    oscillated 
with  a fixed frequency   (most often with  the  subharmonic   frequency 
fi =//2);   moreover,   these   authors   also introduced   a definite   phase 
shift    0     between     temperature     variations     at    any    two    adjacent 
segments.   This arrangement   generated   time-periodic   and   spanwise- 
periodic variations of flow velocity which excited a pair of symmetric 
oblique    waves.    These    waves    propagated     streamwise,     and    their 

spanwise   wavenumbers   ±k2 and inclination  angles   6  = ±tan    (k2/k\) 
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depended on f, 0 and s and hence could be changed by changing 
values of some of these parameters. (Usually the values of k2 and 6 
were adjusted by changing the phase shift 0.) The amplitudes of the 
plane and oblique waves depended on the amplitudes of heating- 
wire and heating-array temperature oscillations; hence both wave 
amplitudes could be arbitrarily varied. Thus, the heating method had 
an important advantage over the vibrating ribbon, since here all the 
important parameters of both the 2D plane and 3D oblique waves 
could be prescribed by experimenters. Results were recorded by 
smoke-flow visualization by smoke and by hot-wire measurements 
of all three velocity components. 

Recall that at the beginning of Sec. 5.2, it was noted that 
Klebanoff et al. (1962) also artificially generated spanwise 
periodicity of the boundary-layer disturbances, but the purpose of 
this procedure was then quite different. In the old work of 1962 and 
in all repetitions of it by other authors, spanwise forcing was used 
only to shorten the time needed for the natural appearance of 
spanwise variations of the nominal 2D disturbance. Therefore, the 
experiments by Corke's group, where the amplitudes, frequencies, 
streamwise and spanwise wavelengths of all waves of a triad, and 
also the degree of phase synchronism between plane and oblique 
waves could be prescribed beforehand by the investigators, were 
much more informative than those of Klebanoff et al. and their 
successors. 

Corke and Mangano (1988, 1989) began their experiments with 
boundary-layer observations in the absence of any heating-wire 
forcing. They found that then the boundary-layer velocity profile 
preserved the Blasius shape down the whole length of the wind- 
tunnel test section, and among the observed weak disturbances 
induced by background noise the least-stable T-S wave played the 
dominant part. Then the authors switched on the wall-to-wall 
heating wire, using two different temperature-oscillation frequencies 
/ corresponding to values F xlO6 = 88 and F xlO6 = 79 of the 
dimensionless frequency F = 2nfv/Ul= cov/Ul (used in Figs. 2.26, 
2.27, in Sec. 2.92 and also in Fig. 5.3). At the position of the heating 
elements exciting the waves, both frequencies corresponded to 
linearly-unstable T-S waves (in these experiments x\ = 45 cm and 
Re+ = (U0xi/v)m = 430 at the position of the heating wire, where x\ is 
measured from the beginning of the test section upon whose wall the 
boundary layer was developed). At larger values of xx (where Re 
increased because of boundary-layer growth) these T-S waves 
became      stable      to     infinitesimal      disturbances.       The     hot-wire 
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measurements showed that, even for a very small initial amplitude 
of the wave excited by the heating wire (much smaller than the 
initial wave' amplitudes used in all studies of the K-regime of 
boundary-layer breakdown), the T-S wave corresponding to the 
frequency F of the excitation was easily detected against the 
background of much weaker external noise. Moreover, the initial 
exponential growth and later decay of this T-S wave, predicted by 
the linear stability theory, was also found in the experiments of 
Corke and Mangano. This agreement with the linear theory showed 
that the locally-plane-parallel approximation used in the theory was 
sufficiently accurate. However, conclusions based on the linear 
stability theory were in fact unimportant here, since the linear- 
theory rates of wave growth and decay were negligibly small in 
comparison with the rates of change due to nonlinear interactions, 
which were the main object of the    study. 

As to the experiments where both 2D and 3D waves were 
artificially excited, Corke and Mangano considered only cases where 
fx = f/2, and restricted themselves to the study of three special 
cases. In two of these cases the dimensionless frequency took the 
value Fxl06=79 (and hence FjxlO6 = 2nfv/U2

0x\06= 39.5) and the 
phase shift <p took either the value corresponding to oblique-wave 
inclination angles 0U = ±45°, or a value such that 6h2 = ±59° (cases 1 
and 2, respectively), while in the third case the values were FxlO6 = 
88, FixlO6 =44 and 01>2 = ±61°. In all three cases flow visualization 
showed a 'staggered vortical structure' of the type presented in Fig. 
5.8b. For case 3 the spanwise distributions of the amplitude A = 
u max/^o (where as before u'm3iYL is the value of u at the height z 
where it is a maximum) and the phase   (j)  of the primary   2D wave  of 

frequency F = 79x10-6, and of the sum of 3D oblique waves with half 
this frequency, are shown in Fig. 5.9. [These distributions were 
determined from hot-wire measurements at points with different 
values of y, fixed x = 150 cm (measured from the location of the 
array of heaters) and a value of z corresponding to the critical layer 
where the mean velocity U(z) is equal to the phase velocity c of the 
2D wave.] Fig. 5.9 confirms that the amplitude and phase of the 
primary wave have uniform spanwise distributions, as must be the 
case for a plane wave, while for subharmonic oscillations of half the 
frequency these distributions are consistent with the sum of two 
symmetric oblique waves with spanwise wavenumbers ±k2. Similar 
results were obtained by Corke and Mangano for two other cases; cf. 
also    Fig. 5.7 showing the results of Kachanov and Levchenko (1984). 
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The measurements of the streamwise velocity fluctuations u at 
a number of points on the centerline (v = 0), with different values of 
the coordinate x and coordinate z corresponding to the maximum 
amplitude of these fluctuations, allowed Corke and Mangano to 
determine the downstream development of the streamwise-velocity 
amplitude w'raax of both the plane wave (having frequency F) and the 
subharmonic oblique waves (with frequency Fx = F/2); see Fig. 5.10. 
Fig. 5.10a shows that the rates, G= d(\nA)/dA = dA/Adx, of the 
downstream growth of the oblique-wave amplitude A differ in the 
three cases considered, but in all of them these rates considerably 
exceed those given by the linear stability theory, over a wide range 
of x-values (i.e., of times t measured from the moment of wave 
excitation). Corke and Mangano showed also that the rates G = G(x) in 
all three cases change strongly with x - at first increasing with x to 
some maximal value Gmax (different in the three cases and also 
occuring at different values of x) and then decreasing with x. On the 
other hand, Fig. 5.10b shows that the amplitude of the 2D plane wave 
changes much more slowly. Recall that Fig. 5.6 showed similar 
behavior of the amplitudes of 2D and 3D waves; however, it 
represented the results of Kachanov and Levchenko's experiments 
where only the 2D wave was artificially excited, while oblique 3D 
waves were mainly due to background noise. Hence it was natural to 
suppose that the observed 3D waves are just those with the highest 
rate of growth in the presence of the excited plane wave. Thus, it was 
assumed that the excited 3D waves, together with the primary 2D 
wave, form Craik's fully-resonant triad which, according to Craik's 
theory, extracts energy from the undisturbed flow in the most 
powerful way. As to Fig. 5.10, here all three waves of the considered 
triads were artificially excited and their frequencies, wave vectors 
and amplitudes could be chosen by the experimenters; therefore, it 
was not clear beforehand whether they would or would not satisfy 
Eqs.  (5.7) representing  Craik's  conditions  of strict resonance. 

Since the frequencies F=<DV/£/0
2
 and Fx = axv/Ul were chosen 

so that Fi = F/2, the second condition (5.7) was valid in all three 
cases studied by Corke and Mangano. However, the first condition, 
which concerns the wavenumbers and guarantees that the primary 
2D wave and subharmonic 3D waves have exactly the same phase 
velocity, was not automatically satisfied in their experiments. Note 
that under the conditions of these experiments k could be 
determined with the help of the O-S equation (2.44) as the 
streamwise wave number of the least-stable plane T-S wave in the 
Blasius boundary   layer   having   the  given  frequency   co   = FU0

2/v.   11 

52 



was found that the agreement of the values of k determined in this 
way with the directly-measured values of k was usually rather close 
and this  evidently confirmed the  accuracy of both methods. 

Values of co and k determine the phase velocity c = co/k of the 
primary T-S wave. As to the phase velocity cx of the 3D oblique 
waves, knowledge of k2lk\ = tan0 (or of the value of k2 which could 
be determined from Fig. 5.9 and similar figures for the two other 
cases studied) allowed k\ to be computed from the three-dimensional 
O-S equation (2.41) [This equation has the same form as the 2D Eq. 
(2.44) and satisfies the same boundary conditions (2.42), but it 
determines only the vertical profile of the vertical velocity amplitude 
W(z). For discussion of the computations of the horizontal velocity 
components see the papers by Kachanov and Michalke (1994,1995) 
and Kachanov (1996), and also the earlier papers by Chen and 
Bradshaw (1984) and Tang and Chen (1985) demonstrating the use 
of 2D linear stability computations for determination of eigenvalues 
and eigenfunctions of the 3D linear stability problem]. Calculations of 
k\ with the help of the O-S equations led to values of c\ =k1/a)\ 
according to which the condition c = c\ was satisfied with high 
accuracy in Corke and Mangano's case 1, while in cases 2 and 3 it 
was not satisfied although the differences between the two phase 
velocities were not large. Values of Ci determined from the 
experimental data led to much closer agreement with Craik's 
resonant conditions, in all three cases, than did the values computed 
from the linear O-S equations. Corke and Mangano therefore 
concluded that in the presence of the primary 2D mode the 3D 
subharmonic modes reach phase-velocity synchronization with the 
primary mode in the course of their development, whatever the 
initial conditions, and noted that this conclusion agrees with 
Herbert's secondary-instability theory but disagrees with '"'Craik's 
theory of fully-resonant triads. This topic will not be further 
discussed here; note only that, according to Fig. 5.10, considerable 
growth of 3D waves was observed in all three cases studied (but was 
different in different cases). Because of this one may suppose that a 
subharmonic resonance of some form occured    in all these cases. 

Corke and Mangano carried out a more detailed investigation of 
the properties of the wave triads studied by them, and found that all 
properties observed in their experiments agreed well with the 
predictions by Herbert (1983b, 1988a) and Herbert et al. (1987) [and 
also with subsequent results by Crouch and Herbert (1993)] relating 
to evolution of secondary-instability waves in boundary layers (see 
in this respect   Fig. 5.15a in Sec. 5.4, which  is taken   from   Corke and 
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Mangano's paper). However, as was noted above, some of the 
properties observed in cases 2 and 3 were found to be inconsistent 
with those of fully-resonant triads. Therefore Corke and Mangano 
concluded that the C-type and H-type of nonlinear development of 
subharmonic waves in the N-regime of boundary-layer instability 
growth may be distinguished in practical situations, and in their 
experiments case 1 corresponded to C-type development, while cases 
2 and 3 corresponded to H-type development. Note, however, that 
later Zel'man and Maslennikova (1993a) generalized Craik's concept 
of the fully-resonant triad and stated that their version of the three - 
wave-resonance theory admitted deviations of wave characteristics 
from the strict-resonance conditions (5.2b) and led to results which 
also agreed very well with Corke and Mangano's data. Furthermore, 
Fig. 5.15b shows that the method proposed by Mankbadi (1991, 
1993a) for approximate evaluation of the growth rates of oblique 
waves entering symmetric wave triads gives results which agree 
excellently with the experimental data of Corke and Mangano in all 
three   cases   studied. 

A more thorough analysis of Corke and Mangano's data, 
supplemented by results of a few additional experiments of the same 
type, was carried out by Corke (1987, 1989, 1990, 1995). In his 
papers the main attention was paid to the spectra of the velocity 
fluctuations and the explanation of their origin. In this respect Corke 
investigated the spatial development of various harmonics generated 
by nonlinear interactions of 2D and 3D waves with themselves and 
with each other, and by higher-order interactions of these 'harmonics 
of the lowest order' among themselves and with the primary 2D and 
3D waves. In the 1990 and 1995 papers the effect of 'mode detuning' 
(noncoincidence of the frequency f\ of an artificially-excited 3D-wave 
with the 'resonant frequency' fl2) was specially studied. Corke 
(1995) used the same combination of heating elements as Corke and 
Mangano (which allowed the frequencies of 2D and 3D waves to b e 
set to any values) to excite a pair of symmetric oblique waves with 
dimensionless   frequency   FixlO6 = 39.5  (corresponding   to fx = 16 Hz) 

and 0lp2 = ±tan~\k2/k1) =±59° together with a 2D (plane) T-S wave 
whose dimensionless frequency F took different values in the five 
successive experiments. The values of Fxl06used were: 79 (this is 
the 'tuned case' where Fl = FIT) and 81, 84, 86 and 88 (they 
correspond to frequencies / = 32, 32.8, 33.5, 34.75 and 36 Hz). In all 
Corke's wave triads the streamwise wavenumbers k and kx of the 2D 
and 3D primary waves satisfied the 'wavelength resonance condition' 
kx = k/2 with  high accuracy,  but the  'frequency   resonance   condition' 
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©i = all was satisfied only in the 'tuned case'. Measurements of the 
spectra of streamwise-velocity fluctuations downstream of the 
heating elements showed, in all cases, numerous 'higher-order 
waves', produced by nonlinear interactions among existing waves 
and having frequencies and wave vectors equal to differences or 
sums of those of the pre-existing waves. Recall that in the case of 
simple fully-resonant triads quite similar 'oscillations and waves of 
higher orders' were also observed by Kachanov et al. (1977) and 
Kachanov and Levchenko (1982,1884) and some of them are shown 
in Fig. 5.5a. 

Corke's results corresponding to the 'tuned case', where / = 2fx =32 Hz, 
agreed excellently with those found by Corke and Mangano (1989), while 
among the 'detuned cases' (where f*2fx) only some representative results for 
the 'most-detuned' case where F xlO6 = 88 (i.e., / = 36 Hz) were described at 
length in his paper of 1995. In this 'most-detuned' case the artificially-excited 
2D wave with frequency / = 36 Hz and wave number k, together with 3D oblique 
waves with frequency /, = 16 Hz and wave vectors (k/2, ±k2), generated a 
number of supplementary 3D wave harmonics with 'combined' frequencies 
and wave numbers (in particular, with frequencies 20 = 36 -16, 4 = 20 - 16, 32 = 
16 + 16, and 24 = 20 + 4 Hz). Among these 'higher-order harmonics', the lowest 
order had 3D waves with frequency f2 =20 Hz =/, + z\/, Af = 4 Hz, and wave 
vectors k =(k/2, ±k2) produced by nonlinear interactions of primary 2D and 3D 
waves. These waves are especially interesting since, together with the original 
2D and 3D waves, they form a 'five-wave resonant system' consisting of two 
'detuned resonant triads' with frequency-wavevector combinations (/, k, 0), 
(/",, k/2, k2), (f. + Af, kl2,-k2), and (f, k, 0), (fx, k/2, -k2), (fx + Af, k/2, k2) [cf. the 
related 'tuned five-wave resonances' mentioned in Sec. 5.1 and considered by 
Craik (1985), Sec.16.2]. The corresponding 'detuned resonances' explain well 
the rapid growth observed by Corke (which began immediately after the 
appearance of the wave of frequency 20 Hz) of both the primary 3D wave of 
frequency 16 Hz and the 3D harmonics of frequency 20 Hz (see Fig. 5.11). Note 
that in the early stages of disturbance development the 'harmonics' had 
smaller amplitude than the primary 3D wave; this was, of course, natural since 
'harmonics' did not exist at the very beginning and had to be generated by 
interaction of the primary 2D and 3D waves. However, after their appearance 
the harmonics began to grow faster than the primary 3D wave, and some time 
later their amplitudes overtook that of the slowly-growing 2D wave. This 
situation is entirely similar to that predicted by Zel'man and Maslennikova for 
the modified cases of Craik's fully-resonant triad, where two oblique waves 
have initially different amplitudes (see Fig. 5.3 above). Using the data of some 
preliminary experiments of Corke's group, Mankbadi (1993b) proposed some 
approximate equations describing the dependence of the amplitudes of the 2D 
wave, and of two pairs of symmetric oblique waves entering 'a pair of detuned 
resonant triads', on Re (i.e. on the streamwise coordinate x determining the 
value of Re). The equation given for two oblique-wave amplitudes included 
cubic terms (more general than those in Eqs. (5.11) for the 'fully-resonant 
case') which allowed the saturation of the oblique wave to be determined. 
Mankbadi's amplitude equations were simplified by Corke (1995), who 
presented  them  in  the  form  of  three   equations   for the  three   amplitudes;   these 
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equations contained eleven constant coefficients requiring special 
determination. In this context Corke also discussed some data from his 
amplitude   measurements   which   will   not   be   considered   here. 

According to Corke, both oblique waves (with frequencies 16 and 20 Hz) 
of the 'detuned triad' had practically the same phase velocity (and hence the 
same 'critical layer'). They also had the same normalized vertical amplitude 
profile L4(z/Ö*)l/Amait, which did not differ much from the amplitude profile of 
the oblique components of Craik's 'tuned' resonant triad with /, =//2, &, =k/2, 
which was measured both by Kachanov and Levchenko (1982, 1984) and by 
Corke and Mangano (1989). (The results found by these two groups were rather 
close to each other; they will be discussed in Sec. 5.4 and shown there in Fig. 
5.16a. At the same time, Corke and Mangano's results showed that in their cases 
2 and 3, where kx took values close, but not equal, to k/2, the normalized 
profiles of subharmonic-wave amplitudes did not differ much from those 
observed in the 'fully-resonant' case 1.) On the other hand, the amplitude 
profile of the 'higher-order harmonic' with low frequency /= 4 Hz differed 
considerably from that in Fig. 5.16a, while as a rule the mean value of the 
amplitude \A(z)\ of this (and other) higher-order harmonic components of 
velocity   fluctuations   grew   significantly   as x     increased. 

Corke also showed that in the course of disturbance development new 
wave components were repeatedly generated by numerous nonlinear 
interactions among existing components. Thus, the detuned-triad resonance 
studied in his paper led to the appearance of a broad range of streamwise- 
growing discrete modes at intervals equal to the lowest difference frequency 
(equal to 4 Hz in the case considered here). An example of Corke's observations 
of the downstream growth of a number of such higher-order harmonic 
components is shown in Fig. 5.12. Let us recall that Figs. 5.5a,b show that 
frequency spectra of the nonlinearly-developing disturbances in a Blasius 
boundary layer perturbed by a vibrating ribbon are in fact very far from the 
pair of discrete lines at frequencies co0 and co0/2 corresponding to a resonance 
triad of Craik's type. And detuned resonances generated by background noise, 
with low detuning Af, may be one of the mechanisms producing the rapid 
growth of energy of low-frequency fluctuations and thus leading to formation 
of spectra of the type presented  in Fig.  5.5a,b. 

Another method of controlled wave excitation, proposed by 
Gaponenko and Kachanov (1994), was used by Bake, Kachanov and 
Fernholz (1996) and Bake, Fernholz and Kachanov (2000). These 
authors carried out their experiments in a wind tunnel at the 
Technical University of Berlin, having an axisymmetric test section 
with a diameter of 441 mm and a total length of 6000 mm. The 
boundary layer studied developed on the wall of the test section. At 
a free-stream velocity U = 7.2 m/sec the boundary-layer thickness 8 
at the position of wave excitation (corresponding to x = xs = 547 m m 
if x = 0 corresponds to the beginning of the test ection) was close to 
6 mm (with <5* =2 mm). Under this condition the undisturbed 
normalized velocity profile U(.z/S*)/Uo had practically the same 
Blasius form (which corresponds to flat-plate boundary layers) at all 
streamwise     and     spanwise     measurement      positions.     The    wave 

56 



disturbances were introduced into the boundary layer by a 'slit 
generator' consisting of a long narrow slit (with 0.5 mm width, 5 mm 
depth and '260 mm length in spanwise - i.e. circumferential - 
direction) cut into the inner wall, and a set of 32 small tubes (with a 
spanwise spacing of 8 mm) placed under the slit and connected to 
three loudspeakers. The loudspeakers were fed by three different 
time-periodic signals which combined with each other inside the slit 
generator forming, near the outlet of the slit, a field of flow 
fluctuations corresponding to a 2D or 3D disturbance of any type of 
interest   to   the  investigators. 

Bake    et    al.    used     the     primary      frequency     /    =    62.5Hz 

(corresponding    to   F = 2nfv/U% =  115.5xl0~6  and   to   subharmonic 

frequencies fx =//2 = 31.25 Hz   and Fx = 57.8xl0~6) and studied   four 
cases  of excited wave disturbances: 

I) The primary 2D wave of frequency / and large amplitude A is 
excited simultaneously with a pair of oblique subharmonics of 
frequency fx and low amplitude Ai «A. The spanwise 
wavenumbers of the oblique waves ±k2 were determined b y 
the spanwise spacing of the tubes feeding the slit generator, 
but the phases of primary and subharmonic waves could be 
prescribed by the experimenters and were chosen to be close 
to values which, according to previous data, are most favorable 
for   the   subharmonic  resonance. 

II) Only the pair of subharmonic waves with the same 
characteristics as in case I was excited. 

III) Only the primary wave (the same as in the case I) was excited. 
IV) The same three waves as in case I were excited, but the phase 

shift between the fundamental and subharmonic waves was 
selected to be least favorable  for the  subharmonic  resonance. 

In cases II-IV no indication of resonance was found; therefore 
only results for case I will be discussed below. Results relating to 
the initial stage of the disturbance development (for Ax = x - xs <250 
mm) as a rule agreed well with those of the previous investigations. 
It was found that at the chosen values off, k2, A, Ax, and the phase 
shift between primary and subharmonic waves the resonance 
conditions (5.7), guaranteeing the equality of phase velocities of 
three waves, were satisfied with good accuracy. Hence it was only 
natural that for Ax < 250 mm the results of Bake et al. for spanwise 
distributions    of  the   amplitudes    and   phases    of  the   primary    and 
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subharmonic waves, for the normalized vertical profiles of the same 
amplitudes and phases, and for the 'growth curves' representing the 
dependence of the amplitudes of three waves on the streamwise 
coordinate x, did not differ much from the values of the same 
characteristics found for fully-resonant wave triads, e.g., by 
Kachanov and Levchenko (1984), Saric et al. (1984), Kozlov et al. 
(1984), Thomas (1987), and Corke and Mangano (1989), who usually 
also restricted themselves to not-too-large values of Ax (some results 
from these papers are shown in Figs. 5.6, 5.7, 5.9, and in Figs. 5.16 
and 5.17 to be discussed in Sec. 5.4). 

Note, however, that the wind tunnel used by Bake et al. had a 
very long test section and the region Ax < 250 mm is only a small 
part of it. In fact, the main purpose of the investigators was to study 
the N-regime of wave-disturbance development over a downstream 
range much greater than any explored previously. They found that at 
large values of JC the wave development which began as the N- 
regime, unexpectedly acquired some features which were previously 
considered as typical only for the K-regime. However, these results 
can be discussed only with those relating to the K-regime of 
disturbance development, and this discussion must be postponed 
until Sec. 5.5. 

5.4.   COMPARISON OF THEORETICAL PREDICTIONS FOR THE N- 
REGIMEWITH EXPERIMENTAL AND NUMERICAL DATA 

Let us begin this section with a discussion of the remark made 
in Sec. 5.3 (see p. 46) that the discrepancy between Kachanov and 
Levchenko's (1982, 1984) experimental value of the inclination angle 
Ö = I0i,2I of observed subharmonic oblique components of a resonant 
wave triad, and the theoretical estimate of this angle by Volodin and 
Zel'man (1978), may be explained by some defects of Volodin and 
Zel'man's theory. The first hint indicating that, contrary to the 
conclusion of this theory, the value of the angle d= I0li2l is apparently 
not universal but depends on the value of the plane-wave amplitude 
Ai was given by Zel'man and Maslennikova (1984). In subsequent 
more explicit studies (1989, 1990, 1993a) these authors proved that 
there is a direct link between the values of 6 and A{. This proof 
confirmed the experimental results of Saric and Thomas (1984) and 
Saric et al. (1984) which have been already mentioned in Sec. 5.3 (on 
p. 48) and will be considered at greater length slightly later. 
Moreover, the proof clearly implies that the unique value of 9 given 
by Volodin and Zel'man in 1978 cannot be universal. 
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The point is that in 1978 Volodin and Zel'man followed Craik's 
paper of 1971 and considered only 'fully-resonant triads' consisting 
of one plane' and two symmetric oblique T-S waves exactly satisfying 
Eqs. (5.7), where k and &i are real parts of streamwise wave- 
numbers of plane and oblique waves, and co and co\ are the real parts 
of the corresponding frequencies. [For the sake of brevity, the words 
'real parts' are applied here to both wavenumbers and frequencies. 
Of course, in the overwhelming majority of actual stability problems 
only one of these two wave characteristics takes complex values.] 
Later Zel'man and Maslennikova (1989, 1990, 1993a) generalized 
Craik's model admitting, in particular, that two oblique waves may 
not be strictly symmetric (e.g., the amplitudes of these waves may 
differ from each other) while the two Eqs. (5.7) may be valid not 
exactly but only approximately. According to the results of these 
papers (some of which have already been mentioned in Sec.5.2) in 
the cases of these more general wave triads rapid resonant growth 
of the oblique waves also occurs quite often; see, e.g., Fig. 5.3 taken 
from the paper (1993a) and also Figs. 5.10 and 5.11 showing some 
experimental data confirming this conclusion. Now we will continue 
the discussion of the corresponding theoretical and experimental 
results. 

Fig. 5.3 is only one example illustrating the general results 
given by Zel'man and Maslennikova (1993a). According to these 
results, if the value of Re+ = U05*/v = (U0x/v)m (or of Re*=U0S*/v = 
1.72Re+) is given, then under rather general conditions there exists, 
for a given plane T-S wave of frequency co, streamwise wavenumber 
k, and amplitude Ax, a large set of pairs of oblique 3D-waves of 
frequency co\ ~ co/2 inclined at angles ±0 to the undisturbed-flow 
direction; together with the primary plane wave these form 'resonant 
triads'. (These triads, as a rule, do not satisfy Eqs. (5.7) exactly, but 
nevertheless they are 'resonant' since the corresponding amplitude 
equations include resonant quadratic terms. Therefore, here the 
growth rates G0 = dA2,3/A2,3dx of the oblique-wave amplitudes A2 = 
A3 strongly exceed the growth rate Gp of the plane-wave amplitude, 
which remains close to that given by linear stability theory.) For a 
number of such generalized resonant triads Zel'man and 
Maslennikova computed the interaction coefficients Bu B2 and B3 of 
Eqs. (5.4a) by a method similar to that used by Volodin and Zel'man 
(1978); a few results of these computations are shown in Fig. 5.3. In 
the cases where two oblique waves entering the triads had the same 
amplitude,    the   same   frequency    co/2   and   matched    phases,    these 
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waves had variable streamwise wavenumbers k\ ~ kll and values of 
spanwise wavenumbers ±k2 filling a rather wide range. For the 
existence of a collection of pairs of oblique waves resonantly excited 
by a given plane wave, it is only necessary that Re (according to any 
suitable definition) be high enough and that A\ be not too small. Note 
in this respect that the existence of the threshold value Atr of Au 

below which no growing 3D waves can be excited, was predicted 
quite early by Görtier and Witting (1958) and Maseev (1968a,b), and 
that Maseev's Fig. 5.4 implies also that at any A >Atr there is a finite 
range of k2 values corresponding to 3D waves growing in the 
presence of the given plane wave. 

The ranges of admissible values of k2 and k2/kx, corresponding 
to positive growth rates G0, and also the preferred values of k2 and 
k2/ku (&2)Pr and (k2/ki)pr, (corresponding to the greatest value of G0), 
depend on Ai, co and Re, while the value of G0 itself depends on A\, 
co, Re and k2/kl. (Note that for given values of Re, coll, and k2, the 
streamwise wavenumber k\ of the corresponding most-unstable 
oblique wave may be determined uniquely with the help of the O-S 
equation (2.41). However, the strict equality kx = kll will be valid 
here only for one special value of k2.) Fig. 5.13, which is based on the 
results of Zel'man and Maslennikova's computations, shows a typical 
example of the dependence of G0 (non-dimensionalized with 8+ as the 
unit of length) on K2 = k2v/U0 (and also on k2/kx = tanö) for some 
definite values of the dimensionless parameters Re+=U0ct/v and 
Fi = 6)iv/£/0

2 and a number of values of the amplitude Ax (measured as 
fractions of U0). This figure shows that here the preferred value of 
k2/ku which must be met most often in real boundary-layer flows, is 
not constant but grows with the value of A\. According to the results 
of Zel'man and Maslennikova (1993a) (only partially represented in 
Fig. 5.13) the value of {k2/kx)vt depends very little on Re+ and Fh 

while at values of Ax only slightly above the threshold value (which 
makes possible the resonant growth of some oblique waves), 
{k2/k\)vx = 1 (and \Ak\ = lfci-fc/21 is very small, i.e., the resonant triads 
are here close to Craik's conditions of perfect resonance). With an 
increase of the amplitude A\, the range of values of k2lk\ 
corresponding to resonance conditions where G0 > 0 also increases, 
the value of (Jfc2/^i)pr grows and approaches 2 and \Ak\ also grows 
(but, nevertheless, \Ak\/k remains relatively small). Hence, contrary 
to the expectation of Craik (1971), among the triads including one 2D 
and two symmetric   3D waves   the  growth   rate   of 3D waves   usually 
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attains   its  greatest   value   for a triad   satisfying   only   approximately, 
but not exactly,  the resonance conditions  (5.2b). 

Recall that Kachanov and Levchenko (1982, 1984) stressed that 
in their experiments the symmetric wave triads appearing in the 
flow (and hence apparently corresponding to the most rapid growth 
of oblique waves) were those exactly satisfying Eqs. (5.7). However, 
this statement apparently shows only that in these experiments 
\Ak\/k was so small that it was difficult to distinguish it from zero. 
As to the results of Corke and Mangano (1989) shown in Fig. 5.10, 
according to which three wave triads with different values of the 
oblique-wave angle 6 = tan(k2/k\) also have different rates of 
oblique-wave growth, they clearly conform to the results just 
discussed. Having this in mind, Zel'man and Maslennikova (1993a) 
compared growth rates G0 found by Corke and Mangano for three 
pairs of oblique waves excited in their experiments with the results 
of their own computations. This comparison showed that the 
experimental values of G0 found by Corke and Mangano for three 
different values of k2/k\ (corresponding to two values of Fx relatively 
close to each other, and to known values of Re and Ax which differed 
very little in the three cases) agree very well with the computed 
values of Go- As will be shown below in Figs. 5.15a,b, the closeness of 
the oblique-wave amplifications measured by Corke and Mangano to 
theoretical estimates was also confirmed by Corke and Mangano 
themselves, using a quite different theoretical model, and then by 
Mankbadi (1993a) who made comparisons with results of 
computations based on the use of one more theoretical model. The 
good agreement found by the above-mentioned authors between one 
set of experimental data and the results of three different theories 
apparently shows that these three theories in fact differ much less 
than appears  at first sight. 

Let us now pass to Fig. 5.14 which is also based on results by 
Zel'man and Maslennikova (1993a). This figure shows values of k2/kx 

observed in some recent experiments where A\ took different values. 
It is natural to believe that the values of k2/kx observed in 
experiments are just those which correspond to maximal growth 
rates of oblique waves (recall that a similar assumption has been 
widely used in comparisons of the results from linear stability theory 
with experimental data). Therefore in Fig. 5.14 the values of k2/kx 

observed in experiments are compared with theoretical estimates of 
(k2/ki)pT. Two types of these theoretical estimates are shown in the 
figure: the simplest ones derived for the plane-parallel model of 
Blasius  boundary   layer,   and   the   improved   estimates   based   on  the 
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theory of Zel'man and Kakotkin (1982) which took into account the 
non-parallelism of the boundary-layer. As can be seen, the latter 
estimates agree excellently with the available data, confirming the 
idea that the values of k2/ki observed in experiments where only a 
plane wave is artificially excited are very close to {k2/kl)v,. 

Similar   results    were    obtained    by   Herbert    (1983b,     1984a, 
1988a,b)    [and  by  Herbert   and   Bertolotti   (1985)]   in  studies   of the 
secondary-instability   mechanism   of generation   of three-dimensional 
structures   in a boundary   layer   by means   of a principal   parametric 
resonance   of oblique  waves   [see Eq. (5.14b)   and  the  text  relating   to 
it]. In  these   studies   it was   also  found   that   at  a given   value   of Re 
(Herbert   used the Reynolds   number   Re+) and  for a given  plane   T-S 
wave   of frequency    co    and   not-too-small    amplitude    Au  there    is 
usually    a   wide    range    of   values    of   k2   (and    hence    of   k2/kx) 
corresponding   to pairs   of fast-growing   3D waves   of frequency    all. 
This   range   widens,   and   the   growth    rates    G0     increase,    with   an 
increase   of Ax above   some  rather   small  threshold   value,   while   the 
preferred   values,   (fc2)pr and  (k2/k{)pT,   of k2 and k2/kx corresponding 
to  the   greatest   possible   value   of    G0    increase   monotonically   (but 
relatively    slowly)   with    an   increase    of   the    amplitude    h\   or   of 
Reynolds     number     Re*.    Herbert's     results     also     agree     entirely 
satisfactorily   with   some   experimental   and  numerical-simulation   data 
(see e.g. Fig. 5.15a,c).      Mankbadi     (1993a)     also    tried     to    estimate 
theoretically   the   growth   characteristics   of the  oblique   components   of 
a resonant triad at different   values  of parameters   Au Re*, and k2 [of 
course instead of the value of k2 it may be used the value  of k2/kl or 

of 10 I = ian~\k2/kl)]. He applied for this purpose his 'nonlinear- 
critical-layer method', which was briefly discussed at the end of Sec. 
5.2. Like the other authors mentioned above, Mankbadi found that at 
given not-too-small values of A and Re*, positive values of the 
oblique-wave growth rate G0 correspond to a wide range of values of 
k2 and this range widens (and the maximum value of G0 increases) 
when Aj and/or Re* increase. His quantitative results agreed quite 
satisfactorily with the experimental data of both Kachanov and 
Levchenko (1984) and Corke and Mangano (1989), and with the 
results of Spalart and Yang's (1987) numerical simulation of 
disturbance development in Blasius boundary-layer flow disturbed 
by a vibrating ribbon (see, in particular, Fig. 5.15b,c). Thus, three 
different methods of computation of the resonant-triad development 
in the boundary layer led to results which are close to each other and 
agree   satisfactorily   with   both   experimental   and   numerical-simulation 
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data. At the same time, all the above-mentioned results clearly 
contradict the early conclusion of Volodin and Zel'man (1978) based 
on their use of the original model of Craik (1971). 

Let us now pass to comparison of the measurements b y 
Kachanov and Levchenko (1984), of the vertical profiles of the 
amplitude Am(z) and phase 01/2(z) of the subharmonic oblique waves 
entering the resonant triad, with the available theoretical results. 
[Now notations Am and </>1/2 are used instead of the notations A2, A3, 
A2,3, and <j>2, fo used above.] It was mentioned above that Kachanov 
(1994a) compared these profiles with several theoretical and 
numerically-simulated estimates. The first theory used by him for 
this purpose was the well-known three-wave-resonance theory. 
However, the initial form of this theory proposed by Craik (1971) 
was too crude to give sufficiently accurate values of the 
subharmonic-wave amplitude Am(z); therefore the refinements of 
Craik's theory by Zel'man and Maslennikova (1989, 1990, 1993a), 
briefly described above, were used by Kachanov to determine curve 
3 in Fig. 5.16a. Moreover, Kachanov considered also the results of 
Herbert's (1984a) theory of secondary instability of the primary 
plane wave, which relate to computation of profiles of Am; these 
results led to curve 1 in the same figure. Finally, we can also use the 
results of numerical solutions of the Navier-Stokes equations 
describing the downstream propagation of a wave triad in the 
boundary-layer - such a solution was computed, in particular, b y 
Fasel-er al. (1987) and led to the results presented as curves 2 in 
Figs. 5.16a,b.3 One may see that, once more, two different theoretical 
approaches and the numerical simulation all give results which agree 
very  well  with  the  experimental  data  and with  each  other. 

Herbert (1984a, 1986), Herbert and Santos (1987), Herbert et 
al. (1987),   Crouch   and   Herbert   (1993),   Zel'man   and   Maslennikova 

3  Some   other  attempts   at  numerical   simulation   of the  N-regime  of boundary 
layer   instability   developments   were   carried   out  by   Spalart   and   Yang   (1987) 
and  Laurien  and  Kleiser  (1989)   (one  result  of the  former  authors   is   shown  in 
Fig.   5.15c).   However,   in  both   these  papers   the  less-accurate   temporal,   and  not 
spatial,   simulation   was   performed   (see   the   small-type   text  below   for   discussion 
of  the   difference   between   these   two   approaches   and   the   remarks   about   this 
topic  in  the next footnote 4).   Hence,  the  results  found  in  these  papers   were  less 
complete than  those  of Fasel et al, and for this reason, except for Fig.  5.15b, 
these  results  will  not be  considered  here.   On  the  other hand,  Rist  and Fasel 
(1995)   improved  somewhat  on  the  numerical  method  of Fasel  et al.;  however,  as 
to  the  results   relating  to  N-regime,   the  paper  of  1995   contains   only  the 
indication   that   here   "the   quantitative   agreement   between   numerical   results 
and  experiments  was  at least  as  good  or  even  better than  that  achieved  by  Fasel 
et al.   (1987)". 
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(1993a), and Kachanov (1994a) showed also that the results of 
measurements by Kachanov and Levchenko (1982, 1984), Saric et al. 
(1984), and Corke and Mangano (1989) for the dependence of the 
primary-wave and subharmonic-wave amplitudes on x (or on Re <* 

xin), which are presented, in particular, in Figs. 5.6 and 5.10, agree 
excellently with the results of available computations of the spatial 
amplitude growth. The accuracy achieved was found to be practically 
the same for computations based on Herbert's secondary-instability 
analysis and on the three-wave-resonance theory of Zel'man and 
Maslennikova. The same, if not better, accuracy was found in 
comparisons with numerical solutions by Fasel et al. of the initial- 
value problem for Navier-Stokes equations, describing development 
of a three-wave disturbance in the Blasius boundary layer. Some 
results confirming the statements made here are collected in Figs. 
5.17a-c. Let us also note that Mankbadi (1991, 1993a) compared 
amplitude-growth data for the primary and subharmonic waves in a 
boundary layer, found in experiments by Kachanov and Levchenko 
(1984) and Corke and Mangano (1989), with results of his theoretical 
calculations by the nonlinear-critical-layer method and with the 
appropriate numerical-simulation results; his comparison showed yet 
again that there is good agreement between the available 
experimental, theoretical and numerical data (see Figs. 5.15b,c 
above). 

Figs. 5.13-5.17 require some comments. Let us note first of all that the 
numerical-simulation data presented in Fig. 5.15c were obtained by numerical 
simulation of temporal (and not spatial) disturbance development. This means 
that the authors assumed that the disturbance studied was streamwise-periodic, 
and then used the N-S equations for computation of its evolution in time. This 
assumption presupposed that the parallel-flow approximation was used, but 
this corresponds to the real experimental conditions somewhat more poorly 
than the spatial-growth approximation used in spatial simulations where the 
disturbance is assumed to be time-periodic (with a prescribed frequency) 
while its dependence on coordinate x has to be computed with the help of the 
N-S equations (cf. a similar comparison of temporal and spatial solutions of the 
Orr-Sommerfeld eigenvalue problem in Chap. 2, pp. 113-114). Moreover, the 
influence of boundary-layer growth can be, at best, only crudely taken into 
account   in the  framework    of the   temporal    approach4, while   in   the   case   of a 

4 The  simplest way  of doing this is based on the supplementation of the N-S 
equations   by   an   artificial   'force   term'   guaranteeing   the   existence   of  a   solution 
describing   the   plane-parallel   Blasius   boundary   layer   with   time-dependent 
thickness   S(t),  growing  at  a  rate  equal  to  that registered  by  an  observer who 
moves   streamwise   with   a   reasonably   chosen   velocity.   According   to   Gaster's 
(1962)   arguments,   the   group   velocity   cg of a packet of T-S  waves (which 
depends   only   weakly   on   the   vertical   coordinate  z) may be chosen as such a 
'reasonable    velocity'.    Then    the    corresponding    time-dependent   plane-parallel 
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spatial numerical simulation the dependence of the primary flow on x offers 
no difficulty. However, for temporal simulations much less computer resources 
(memory and - computation time) are needed and the determination of the 
appropriate outflow boundary conditions at the downstream end of the 
computation domain, is much easier than in the case of spatial simulation; 
therefore it is not surprising that the temporal approach to flow simulations 
has been very popular. In addition to Spalart and Yang (1987), temporal 
numerical simulations of boundary-layer instability development have been 
carried out by Wray and Hussaini (1984), Zang and Hussaini (1985, 1987, 1990), 
Laurien and Kleiser (1989), Zang (1992), and some others (see also the 
description of some related numerical-simulation results in Sec.5.5). I n 
particular, Zang (1992) showed that results of temporal numerical simulation 
agree well with the data of Corke (1990) relating to the effect of mode detuning 
on wave triad development in boundary layers. However Fasel et al. (1987), 
whose data are shown in Figs. 5.16 and 5.17, carried out a spatial numerical 
simulation of boundary-layer instability, and the spatial approach was also 
discussed and used by Murdock (1986), Fasel (1990), Fasel and Konzelmann 
(1990), Konzelmann (1990), Rist (1990, 1996), Kleiser and Zang (1991), Kloker 
(1993), Rai and Moin (1993) (who studied the case of a compressible boundary 
layer with a high level of external disturbances), Joslin et al. (1993), Reed 
(1994), Rist and Fasel (1995), and Rist and Kachanov (1995), while the 
corresponding outflow boundary conditions were discussed by Kloker et al. 
(1993). 

Now let us pass to other subjects. In some of the above-mentioned papers 
by Herbert it was indicated that the secondary instability of a plane T-S wave 
in a laminar boundary-layer flow may manifest itself in the plane-wave 
instability with respect to some 3D Squire (Sq) waves, which satisfy Eqs. (2.46) 
of Chap. 2 and the conditions indicated there. (Recall that all Sq waves are 
rapidly damped and hence decay as t -> °°; however, as pointed out in Chap. 3, 
these waves may nevertheless make a large contribution to the transient 
growth of very small disturbances.) The instability with respect to Sq, and not 
T-S, wave disturbances was first considered by Herbert (in short, H) in his 
studies (1983a, 1984b) of the secondary instability of a plane T-S wave in a 
plane Poiseuille flow, where the midplane symmetry of the undisturbed 
velocity profile produces serious difficulties for the possibility of the plane- 
wave secondary instability with respect to oblique T-S waves [more will be said 
about this in the next chapter of this book; cf. also Wu (1996)]. Based on his 
experience of plane-channel secondary instability, H stated in the papers 
(1983b, 1984a, 1988a) on the secondary instability of the Blasius boundary- 
layer flow that here the instability with respect to 3D Squire waves may also 
take   place,   in   principle. 

Later Zel'man and Maslennikova (in short, Z-M) in the paper (1993a) 
criticized Herbert's conclusion, stating that for the triad comprising a plane T- 
S wave and a pair of Sq waves with half the streamwise wavenumber, the 
resonance frequency condition (5.7) is strongly violated. According to Z-M, 
this   shows   that   resonance     among    one   T-S plane    and   two   3D subcritical    Sq 

boundary   layer  may   be  considered  as   a  temporal  model   of  the  real   streamwise- 
growing  boundary  layer  [cf.   the  remark  in  Chap.   4,  p. 103,   about  a  similar 
method   of  numerical   simulation   of  the   steady   plane-parallel   model   of  a  Blasius 
boundary   layer].   This   method   of   approximate   allowance,   in   temporal 
numerical   simulations,   for   the   spatial   (streamwise)   growth   of   a   boundary 
layer  was  used,   in  particular,   by  Spalart  and  Yang  (1987)   and  later  gained 
great    popularity. 
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waves is impossible; thus, a T-S mode cannot stimulate fast growth of some Sq 
modes. Furthermore Z-M indicated that the form of the vertical profile of the 
subharmonic-wave amplitude computed by Herbert (1984a) (see Fig. 5.16a) 
clearly showed that here the subharmonic wave was represented by a three- 
dimensional T-S wave and not by a Sq wave which has a quite different 
amplitude profile. Therefore, Z-M (1993a) considered only amplitude equations 
of the forms (5.4) and (5.4a) corresponding to wave triads comprising three T- 
S waves. According to their results, numerical solutions of such equations 
agreed well with all available data for the initial stage of the N-regime of 
boundary layer development. In particular, the results of their computations 
agreed very well with the data of Kachanov and Levchenko (1982, 1984) for 
the profile of the subharmonic-wave amplitude (see again Fig. 5.16a) and of 
Saric et al. (1984) relating to the streamwise-growth curves for amplitudes of 
primary   and   subharmonic   waves   (see   Fig.   5.17a). 

However, Herbert (1983b, 1984a, 1988a) did not assert that the excitation 
by a plane T-S wave of two Sq waves really plays an important part in the 
development of three-dimensional structures in the Blasius boundary-layer 
flow; he only indicated that this mechanism must be also considered. In fact, 
results presented in his papers (1984a, 1988a) clearly show that interactions 
among triads of T-S waves play the dominant part in the development of three- 
dimensionality in boundary layers.5 On the other hand, the assertion by Z-M 
(1993a) about the impossibility of strong excitation in a boundary-layer flow 
of oblique Sq waves by a plane T-S wave was not correct. The point is that, 
even earlier, Nayfeh (1985) proved that a strong interaction of a T-S wave with 
a pair of Sq waves is quite possible in the Blasius boundary layer. Slightly 
later, and independently, this result was confirmed by Zang and Hussaini 
(1990). These authors computed several solutions of N-S equations describing 
the downstream propagation, in a plane-parallel flow with Blasius velocity 
profile, of wave triads consisting of a linearly-unstable plane T-S wave and a 
pair of symmetric 3D Sq waves with half the streamwise wavenumber. Growth 
curves for amplitudes of one plane T-S and two oblique Sq waves determined 
by Zang and Hussaini had the same form as the growth curves in Figs. 5.17a-c, 
and thus clearly showed that a plane T-S wave may stimulate rapid growth of 
two symmetric Sq modes. The computations by Zang and Hussaini also showed 
that a resonance triad consisting of one T-S and two Sq waves produces in a 
boundary layer a vortical structure, which depends on the value of the plane- 
w-ave amplitude in exactly the same way as was found in the experiments of 
Saric and Thomas (1984). However, Zang and Hussaini did not try to compare 
their results quantitatively with any real experimental data relating to the N- 
regime of boundary-layer instability development. Therefore, their work 
cannot be used for a reliable determination of the physical mechanism which 
produced the N-regime of boundary-layer development observed in this o r 
that   specific    experiment. 

To identify     this    mechanism,     it   is   necessary     to   use   the    results    of 
comparisons    of  specific    experimental     data   with   the   predictions     of  various 

5  However,   the  Squire  waves   also  possibly  made  some  contribution  to  the 
secondary   disturbances   computed   by   Herbert   and   his   co-authors   [such   a pte-fo. S^4< 
possibility  was  explicitly  stated  by  Crouch  and  Herbert  (1993)].   It  is  also ^/^fe^'/ut^ 
possible   that   some   small   Squire-wave   contribution   was   present   even   in   some (J^^f^-cr^ 
of  the  computational   results   of Zel'man   and  Maslennikova;   as   was   pointed  out T^^^X^^ 
by   E.   Reshotko   (personal   communication)   Squire   waves   sometimes   appear &tbuit/^^ejt^v. 
quite   unexpectedly   in   numerical   solutions   of   the   Navier-Stokes   equations. L5              *** H 
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theoretical models. Let us consider from this point of view the results shown 
in the above Figs. 5.13-5.17. All these figures illustrate the excellent agreement 
of the experimental results with the calculations. Among the theoretical 
models considered, those developed by Z-M were most often used in the figures. 
These models generalize Craik's model of a resonant triad comprising three T-S 
waves (one plane and two oblique, but the strict symmetry of the oblique 
waves and precise fulfillment of the resonance conditions are not now 
required). Excellent agreement of the model predictions with the observed data 
allows one to conclude that the general three-wave-resonance model describes 
one of the instability mechanisms which can produce the N-regime of 
disturbance development in boundary-layer flows. In other words, the Craik- 
type resonance among three T-S waves satisfying, exactly or approximately, 
the resonance conditions (5.7) may quite satisfactorily explain the observed 
features   of   the   N-regime. 

On the other hand, the good agreement of Herbert's (1984a) and Crouch 
and Herbert's (1993) computational results with experimental data, 
demonstrated by Figs. 5.15a, 5.16a and 5.17a,c show that secondary instability of 
a primary plane T-S wave with respect to a pair of symmetric oblique T-S (not 
Sq - Fig. 5.16a proves this quite definitely) waves may also be a mechanism 
leading to the development of 3D structures in boundary layers, as observed b y 
several groups of experimenters. The fact that both the three-wave-resonance 
theory and the secondary-instability theory lead to results which equally well 
describe the available experimental data does not seem surprising. The point is 
that both theories relate to practically the same situation of downstream 
propagation of a triad of T-S waves approximately satisfying the resonance 
conditions. The only difference is that in the secondary-instability theory the 
amplitudes A2 and A2 of the two oblique waves are assumed to be much smaller 
than the plane-wave amplitude Au while in the three-wave-resonance theory 
these three amplitudes are assumed tobe of the same order of magnitude (but 
both theories are restricted to cases of three waves which all have 
sufficiently-small amplitudes). In such situations it seems natural to suppose 
that there must be an intermediate range of ratios A2/A] and A3/A, within 
which both theories will be applicable. In principle, the secondary-instability 
theory must be considered as the more justified in cases where the plane T-S 
wave has already been growing for some time, so that its amplitude has 
reached a finite value, while oblique T-S waves have just been produced and 
hence have very small amplitude; the opposite opinion seems natural in cases 
where all three waves have already been growing for some time and have 
more nearly equal amplitudes. However, it is known that in the physical 
sciences theoretical equations very often turn out to be applicable over a 
wider range of conditions than those under which the equations were derived. 
So it is quite possible that the close agreement between the results of the 
secondary-instability and three-wave-resonance theories over a wide range of 
amplitude  conditions   is  just   one  more  illustration   of this   fact. 

The numerical-simulation results shown in Figs. 5.16-5.17 also support 
the above statement that the N-regime of boundary-layer instability 
development is due to strong interaction among triads of T-S waves. Let us 
begin with Figs. 5.16a and 5.17a, which show excellent agreement between the 
results of the numerical simulation of Fasel et al. (1987), the experimental data 
of Kachanov and Levchenko (1982, 1984) and the theoretical work of H (1984a) 
and of Z-M (1990, 1993a). Recall again that the theory of Z-M is based on the 
assumption that the main features of the N-regime of boundary-layer 
development     are    due   to   the    appearance     in   the   flow   of   a  resonant     triad, 
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comprising one plane T-S wave of relatively small amplitude and two 
symmetric oblique T-S waves of approximately half the frequency. Therefore, 
Fig. 5.16a apparently implies that both the numerical results of Fasel et al. and 
the theory of H also relate to situations where resonant triads including three 
T-S waves play the dominant role. In the case of the simulation data, this 
assumption also agreed well with the description of the computations. In fact, 
Fasel et al. considered the model of a laminar plane-parallel boundary-layer 
flow disturbed by vertical (normal to the wall) velocity oscillations produced 
by periodic blowing and suction of fluid through a narrow strip in the 
upstream part of the plate [see also the description of this disturbance model 
by Konzelmann et al. (1987), which may be compared to the description of five 
different models of this type by Berlin et al. (1999)]. The vertical velocity 
fluctuations were represented in the simulation of Fasel et al. by the sum of a 
spanwise-independent component proportional to sin(«0O, and a spanwise- 
periodic component proportional to sin(cM) cos(£2y). It was assumed here that 
o)1 = co0/2 while the values of co0, k2 and the amplitudes of the two components of 
the disturbance could be varied. It is natural to expect that such disturbances 
will generate a plane T-S wave of frequency co0 and a pair of oblique T-S waves 
having frequency co0/2 and opposite spanwise wavenumbers ±k2; moreover, 
the amplitude of the plane wave could be chosen within the amplitude range 
corresponding to the N-regime. However, it seems highly improbable that 
vertical velocity oscillations produced by blowing and suction of fluid could 
generate   Squire   waves,   which   have   zero   vertical   velocity. 

Note in conclusion that Ustinov (1994) also tried to compare some results 
that follow from three different theoretical models of the nonlinear 
development in a boundary-layer flow of resonant triads comprising three T-S 
waves. Models considered by him included Craik's three-wave model leading to 
amplitude equations of the form (5.4), a DNS model based on numerical 
solutions of the N-S equations describing the downstream propagation of 
resonant T-S-wave triads [here the approximations applied by Ustinov (1993) 
to computations of a plane-channel flow were used], and Herbert's secondary- 
instability model (where Ustinov did not suppose that Sq waves would play any 
role). According to computations for the cases where Ax »A2 = A3 (here Au A2 

and A3 have the same meaning as above) Herbert's theory leads to results 
which agree very well with numerical solutions of N-S equations, while 
Craik's approach leads, if the initial amplitude of the 2D wave is not small 
enough, to results differing considerably from those of the other two models. 
These results apparently show that the question of the accuracy of different 
proposed theories of the N-regime of the boundary-layer instability 
development   cannot   be   considered   to   have   been   fully   answered   at   present. 

Most of the results considered above in this section and almost 
all the figures (Figs. 5.5a,b and 5.12 being exceptions) are related to 
the study of development in a boundary layer of plane and oblique 
Tollmien-Schlichting waves entering a resonant (but not necessary 
fully-resonant) wave triad. As to Figs. 5.5a,b and 5.12, they clearly 
show that a disturbed boundary layer usually includes not just one 
resonant wave triad but a great variety of disturbances of different 
types. Moreover, if the nonlinear development of disturbances is 
studied   as the initial  stage   of laminar-flow   transition   to turbulence, 
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then one has no right to consider only isolated wave triads, since 
such flow conditions are very far from real pre-transition situations. 
Therefore it is reasonable to mention here some other scenarios of 
disturbance development in a boundary layer which may also play a 
significant role in transition processes. Note, however, that there are 
many different scenarios which may be realized under one or 
another combination of flow conditions. Below, only a few typical 
examples of such scenarios will be briefly considered; some other 
examples (which are far from exhausting all the possibilities) will be 
considered in Sec. 5.6. 

Let us first cite the study by Zel'man and Smorodsky   (1990)   of 
the     influence      of    resonant      interactions      on     the     downstream 
propagation    in   a   boundary    layer   of  a   narrow    packet    of   three- 
dimensional   T-S waves.  However,   this work will not be discussed   at 
this   place,   since   propagation    of wave   packets    will   be   separately 
considered   in Sec. 5.6,  and   for  now   attention   will be  paid   only   to 
disturbances   consisting   of a finite   number   of individual   T-S waves. 
Recall in this   respect   that   in Corke's  (1990,   1995)   experiments    the 
development       of     a     artificially-produced       resonant      triad      was 
accompanied   by   the   appearance    of a  great   number    of secondary 
waves.   [In fact, many   such  waves   were   observed   by  Kachanov   and 
Levchenko    (1984)   too;   see   also   Kachanov   (1994a).]    According   to 
Corke,  superposition of primary  and  secondary waves  often included, 
in  particular,    the   'five-wave   resonant    systems'    consisting    of  two 
'resonant  triads'   (maybe   of a detuned   type)   which  both  include   the 
same    primary     2D   wave.    And    Z-M   (1993a)     (here     again    this 
abbreviation   of 'Zel'man and  Maslennikova'   is used)   independently 
computed    the    time    evolution    of   a   'five-wave    resonant    system' 
comprising     a    primary     plane     wave     with     frequency      co       and 
wavenumber    k, and   two  pairs   of nonsymmetric    oblique   waves   (i.e. 
having    different     initial    amplitudes)     with    frequency-wavevector 
combinations    {coll,   ku  ±h)   and    {co/2,   £,*,   ±k2*}.' (In    the    above 
combinations   k2 and k2* are  arbitrarily   chosen   parameters    while  kx 

and ki* may then be computed with the help of the 3D O-S equation.) 
Accurate   determination    of all  interaction    coefficients   entering    the 
five    amplitude     equations     corresponding     to    this     system,     and 
subsequent   numerical   integration   of these  equations,   allowed  Z-M to 
determine     the    streamwise     development     of   all   five    waves    for 
different initial conditions  and different values  of the parameters   Re, 
co, k2 and k2* affecting disturbance   development.   Fig. 5.18 represents 
a typical   example   of the  results   obtained   [the  dependence   of wave 
amplitudes   on x      is replaced   here   by   their   dependence    on  Re+ = 
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(U0x/v)112]. One may see that, as in the results for one asymmetric 
strictly-resonant wave triad shown in Fig. 5.3, the amplitudes of the 
four subharmonic 3D waves grow rapidly with x; moreover, their 
amplitudes quickly become almost equal and their growth curves 
cross  the  2D-wave  growth  curve  together. 

Similar   results    were    obtained    by    Z-M   (1993b)     for   wave 
systems   comprising   more   than   five  individual   waves.   Such systems 
may   be   used   for   modeling,    by   discrete    wave    combinations,    the 
process   of filling-in   of low   frequencies    of the   velocity-fluctuation 
spectra   in  a  disturbed    boundary    layer   (this   process   leads   to  the 
formation   of the   low-frequency    band   clearly   seen   in Figs. 5.5a,b). 
Moreover,   results   for  many-wave    systems   are   needed   to  describe 
Corke's (1995) observations of a great  number   of secondary,   tertiary 
and   quaternary    3D waves   in   a   boundary-layer     flow.   Z-M  began 
attempts   to explain,  by the   weakly-nonlinear    instability   theory,   the 
process  of spectrum   filling peculiar   to the  N-regime   in their   (1990, 
1992)   papers,   and   the   work   was   continued   in the   (1993b)   paper. 
They   considered    the   case   of  a  laminar    boundary    layer    which   is 
disturbed at time t - 0 by a plane, linearly-unstable T-S wave having 
frequency   co0, wave vector k0 = (k, 0), and very small amplitude.   This 
wave  will begin to grow in accordance   with the results   of the  linear 
stability   theory.   When  the   wave   amplitude   becomes   large   enough, 
interaction    with   the   permanently-existing     background    noise   will 
start,   resulting   in the extraction   from   the   noise   of two  fast-growing 
secondary   oblique   T-S  waves   with   frequency    cox « ©0/2   and   wave 
vectors  kj= (ku k2) and k2 = (ku -k2), where kx » k/2  (recall that  Z-M 
considered    only    T-S,   but    not    Sq,   waves).    During    this    stage    of 
disturbance   development   the   primary   plane   wave   will   continue   to 
grow   at   a rate   close   to   that   given   by   the   linear   stability    theory 
(which   is  much   smaller   than   the   growth   rate   of  oblique   waves). 
When   the    amplitudes    of   all   three    waves    become    approximately 
equal, the oblique waves will  strongly   affect the plane  wave,  leading 
to its explosive growth (cf. Fig. 5.3 above  where   the evolution  of one 
non-symmetrical    resonant   triad   was  shown).   However,   even   before 
the beginning of the explosive growth of the primary 2D wave, but at 
some   value   of x    where   the   oblique   waves   of the   first   order   are 
already   rather   large,   the   evolved   first-order    waves   will   begin   to 
excite   two   new   pairs   of symmetric    oblique   waves    (again   at   the 
expense    of   the    energy    of   the    background     fluctuations)    having 
frequency   co2 « co0/4 and wave vectors k3 = (&i', k2'), k4 = (ki',-k2'), k5 

= (ki",k2"), k6 = (iti",-Jk2
/). where fci'^i"« fci/2. These two pairs  of the 

3D waves   of the   second  order   will form,   together   with   two  oblique 
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waves of the first order, two new resonant triads. Then the same 
process may be repeated with respect to waves of frequency co2 and 
so on. As a result a cascade transfer of the energy to more and more 
low-frequency 3D waves will take place, filling the low-frequency 
part of the spectrum (of course, direct nonlinear interactions 
between all the generated waves will also contribute substantially to 
the filling of this spectral range). 

For the locally plane-parallel model of a Blasius boundary layer Z-M 
(1993b) studied quantitatively the first two steps of the cascade process of 
spectrum filling. To do this, they determined a system of 7 differential 
equations for the amplitudes A-„ i = 0, 1, ..., 6, of 7 interacting waves: amplitude 
A0 of the primary plane wave, amplitudes Au A2 of two secondary oblique 
waves, and amplitudes A3, ..., A6 of the four tertiary 3D waves. One typical 
example of the computed dependencies of the amplitudes of these seven waves 
on Re* =U08*/v = \J2(U0x/v)U2^x'/2 is shown in Fig. 5.19. Here it has been 
assumed for simplicity that a>x = co0/2 and (o2 = w0/4, while the initial amplitudes 
A,, ... , A6 of the six oblique secondary and tertiary waves (normalized by 

division into the free-stream velocity U0) were taken to be equal to 10-5 (this 
value represented, in the model considered, the relative intensity of the 
background noise of flat frequency spectrum, but it was found that the results 
were almost the same for a wide range of these  values)   and  the  initial   value   of 

A0 was chosen to be much greater than 10~5. The computations were carried 
out for a number of values of co0, k2'/kx and k2"/kx" while k2/kx was chosen to 
be equal to 2 which, according to Z-M (1990), is the value corresponding to 
maximal growth-rate of the amplitudes A, = A2. Fig. 5.19 shows the results for a 
specific value of co0 and for values of k27kx' and k2"/kx" which lead to the 
fastest growth of the amplitudes A3 = A4 and A5 = A6 of the tertiary 3D waves. The 
figure shows that subharmonic waves of frequency co0/2 begin to grow from 
the moment of their appearance (corresponding, in the case considered here, 
to the value of x for which Re* =850), while the primary-wave amplitude is 
almost unchanged at first (cf. similar results in Figs. 5.3, 5.6 and 5.10, where 
the results for resonant triads including only waves of frequencies ffl0 and 
co0/2 were presented). As to the amplitudes of the tertiary subharmonics of 
frequency co0/4, they even diminish slightly at first. However, beginning from 
a value of x corresponding to Re* = 1050, when A, =A2 reaches some threshold 
level, the amplitudes A3 = A4 and A5 = A6 also begin to grow rapidly (all 
amplitudes Al5 ..., A6 are then growing approximately as exponential functions 
of the streamwise coordinate x and thus also of the time t) while the amplitude 
A0 continues to change very slowly. Only later, where Re* reaches a value 
ReN = 1200, the amplitude of the primary plane wave begins to grow very 
rapidly (faster than exponentially) while all the subharmonics continue to 
grow exponentially with time. Z-M assumed that Re^ must be close to the 
empirical value of the Reynolds number, Retr, characterizing the transition of 
the boundary layer to turbulence, and they derived from this assumption some 
results relating to transition prediction; however in this chapter the later 
stages   of  transition   to   turbulence   will  not  be  discussed. 
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Z-M (1993b) also considered the amplitude equations for cases where a 
number of detuned (i.e., having frequency-ratios differing from the simple 
values 2 and 4 considered above) two- and three-dimensional waves of various 
amplitudes were introduced into the boundary-layer flow at some initial value 
of the coordinate x. In particular, they studied the case where the 2DT-S wave 
and two pairs of 3D waves, with frequencies and wave vectors of the form 
(co0,k0,0), (couku±k2) and (co0-co1,kl',±k2'), were simultaneously introduced into a 
boundary layer flow, and investigated the dependence of the characteristics of 
the corresponding instability developments on the 'detuning parameter' 1- 
2<Di/<u0. They also considered the development of a complicated wave system, 
comprising two 2D and ten 3D detuned waves close to those actually observed 
by Corke (1990). In this case they found many coincidences between the wave 
behavior given by their theory and that observed in the laboratory 
experiment. Some other results of Z-M allowed them to interpret, in a natural 
way, some observations by Yan et al. (1988) who also observed the cascade 
process of filling in the velocity-fluctuation spectrum in the course of 
instability development in a boundary layer. The methods used by Z-M can i n 
principle be applied also to interpretation of Corke's (1995) results presented 
in Fig. 5.12, but the corresponding computations are rather complicated and 
apparently have not yet been carried out. Nevertheless, the results discussed 
above definitely show that the multimode weakly-nonlinear stability theory 
may be very useful for the quantitative theoretical description of many 
phenomena observed during the initial stage of transition of the boundary- 
layer   flow   from   laminar   to   turbulent   flow   regime. 

Let us now consider the investigation by Nayfeh and Bozatli (1979a) of 
the possibility that a primary plane T-S wave of frequency and wavenumber 
(co, k) in a Blasius boundary layer can excite, by means of the principal 
parametric resonance of secondary-instability theory, a two-dimensional T-S 
wave with frequency and wavenumber close to half those of the primary 
wave. Recall that at the beginning of Sec. 5.1 it was indicated that nonlinear 
resonance may occur among two waves with frequency-wavenumber 
combinations (2ft), 2k) and (co, k); therefore, in principle, such resonance in a 
Blasius boundary layer seems to be probable. Moreover, since the two 2D waves 
considered will have critical layers which are close to each other, it seems 
natural to expect that their nonlinear interaction will be rather powerful. 
Nayfeh and Bozatli analyzed the spatial development of disturbances, i.e., they 
considered the primary wave with real frequency co and with wavenumber k 
which may be complex, and assumed that the 2D wave excited by the primary 
wave has the frequency-wavenumber combination (coll, kx) where /c, may 
also be complex but is such that 3ie[k/2 - k{] = Akx is a small detuning 
parameter. (Frequencies and wavenumbers are assumed here to be made 
dimensionless by using the displacement thickness 8* and free-stream 
velocity U0 as length and velocity scales.) To compute the interaction between 
the primary and the secondary waves the authors used the method of multiple 
scales (see the book by Nayfeh (1981) for a description of this method and a 
number of its applications). The computations were performed for three 
values of the dimensionless frequency F xl06= cov/U0

2, namely 60, 52 and 40, 
and a wide range of Reynolds numbers. However, the results were rather 
disappointing: they showed that to trigger the parametric instability in a 
Blasius boundary layer and achieve rapid . growth of the secondary 2D wave, 
the amplitude (peak value) of the primary plane wave must exceed a critical 
value close to 29% of the free-stream velocity U0. Since it is known that in a 
boundary      layer     secondary      instabilities      of    many     other     types     become 
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significant   at   considerably   smaller   amplitudes   of   the  primary    wave,   it became 
clear   that   this   instability   mechanism   cannot   play   a   significant   role. 

Later Healey (1994, 1995, 1996) turned anew to the study of a possible 
two-wave resonance between a pair of two-dimensional waves in a Blasius 
boundary layer with frequency-wavenumber combinations (co, k) and (coukx), 
where cox and kx have real parts twice as large as those of co and k. (Note that 
the subscript 1 now refers to the wave with larger frequency and 
wavenumber.) Healey somewhat changed Nayfeh and Bozatli's problem 
formulation by admitting that both parameters co and k (and naturally cox and 
kx too) may take complex values. Recall that Nayfeh and Bozatli assumed that co 
and cox are real, cox = 2co, while k and kx are complex and such that the real part 
of kx is close to twice the real part of k. The assumptions used allowed Nayfeh 
and Bozatli to choose values of co and Re almost arbitrarily; moreover, they 
spoke only of closeness of the real parts of kx and 2k, since in 1979 it was 
believed that at real values of co and cox =2co the condition 9iekx =23iek could 
not be satisfied exactly. As will be explained below, it was found recently that 
this assumption is incorrect, but this discovery does not invalidate Nayfeh and 
Bozatli's    reasoning. 

Nayfeh and Bozatli used the traditional spatial formulation of the 
stability problem inspired by the experiments of Schubauer and Skramstad 
(1947), and many of their followers, where a plane wave of fixed frequency 
was artificially produced in the initial part of a laminar boundary layer, and 
the subsequent development of this wave and any further instability 
phenomena generated by it were studied. The admittance by Healey of complex 
values for both the frequency and the wavenumber clearly expanded 
considerably the class of plane waves considered, and simultaneously forced 
Healey to change the resonance conditions, giving them the form of two 
equalities: ^ect^ = 23<eco and 3iekx = 23iek. Augmenting the set of waves 
considered of course meant that anew physical situation, which led to a new 
stability problem, was being studied. Healey's problem formulation 
corresponded to the case where the primary plane wave had an amplitude 
which was not constant but was modulated as A(t) = A0exp(-coU)t). To illustrate 
the importance of the instability phenomena produced by such a wave, Healey 
referred to the remark by Gaster (1980) who pointed out that the amplitude 
threshold above which a flow disturbance leads to the boundary-layer 
breakdown and transition to turbulence is often several times lower in the 
case of a modulated wave-packet disturbance than in the case of a disturbance 
having the form of a sinusoidal plane wave. He also noted the results of 
subsequent experiments by Shaikh and Gaster (1994) on randomly-modulated 
wavetrains, which again showed that modulation enhances the nonlinear 
effects of a disturbance. These facts stimulated Healey's study of the instability 
of   a   boundary   layer   disturbed   by   an   amplitude-modulated   wave. 

Healey (1994) investigated whether there exist complex eigenvalues 
k = k(-r)+ikV) and Jfc, = Jk,(r) + £fc,(0 of two O-S eigenvalue problems (2.44), (2.42) 
(where c = co/k and U(z) is the Blasius velocity profile) with complex 
parameters CO = CO(r) + iCO(i) and CO = COx = (o\r) +iCO(

l'
) respectively, satisfying the 

condition Co\r) = 2co(r), which are such that k[r)=2k(r\ Performing some 
complicated computations, Healey showed . that such pairs (co, k) and (cox, kx) 
exist at all high enough values of Re, and that it is also possible to find more 
special pairs (co, k) and (cox, kx) of complex frequency-wavenumber 
combinations     where  not   only    and   k[r) = 2k{r) but even   cox =2co  and  kx -2k. In 
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particular, Healey found that at Re* = 2100 the latter equalities are valid if co = 
0.04318 - 0.01819/ and k = 0.1433 - 0.0600/ (here as usual 5 * and U0 are used as 
length and velocity units). In Healey's (1995, 1996) papers many results 
supplemented those given in Healey (1994) are presented. In particular, in the 
paper (1995) the location in the complex plane of the resonant pairs (co, k) 
and (2co, 2k) is analyzed in its dependence of the Reynolds number and it is 
also shown that if the condition kx = 2k is replaced by less restrictive condition 
k\r) =2k(r\ then it is possible to satisfy this condition, together with the 
condition cox = 2co, by a combination of real co and complex k and kx. [For 
example, at Re* =2000 these conditions are satisfied for co =0.0817, k =0.256 - 
0.0101/, cox =2co =0.1634, kx =0.512 + 0.225/.] However, the results .relating to 
resonant wave pairs with a real value of co (i.e., corresponding to the 
traditional problem of spatial wave development) do not completely undermine 
the early belief that such pairs do not exist. The point is that in the wave pairs 
found by Healey one of the two considered frequency-wavenumber 
combinations necessarily belongs to the higher-order O-S eigenvalues 
describing rapidly-damped higher modes, which earlier were never taken 
into account. Nor do the new results contradict those of Nayfeh and Bozatli 
(1979a), since Healey showed only that there exist pairs of waves for which 
resonance interaction is in principle possible, but said nothing about the 
efficiency of this interaction. At the same time it seems physically doubtful 
that interactions including higher-order modes may really play an essential 
part   in    boundary-layer   instability    development. 

Healey also considered the equations for the complex amplitudes Ax(x) 
and A2(x) of two two-dimensional waves with complex values of co and k 
satisfying the conditions given above for resonance interaction to be 
possible. According to his results these equations, accurate to the order of the 
quadratic   nonlinearities,   have   the   form 

^ = -kl% + b^A,,     ^ = -kt'% + b2A? (5.15) 
dx dx 

where bx and b2 are the interaction coefficients corresponding to the situation 
considered. (Here again nonvanishing of these coefficients shows that the 
interaction is a resonant one.) For details of the derivation of Eqs. (5.15) and 
evaluation of their coefficients see Healey (1995), where a small wavenumber 
detuning of two waves is also allowed [cf. also Dangelmayr (1986)]. Some of the 
results implied by these equations were verified by Healey in some specially- 
arranged wind-tunnel experiments where development of modulated waves, 
and also the influence of the phase difference between two waves (which 
according to equations (5.15) must be rather significant) were measured. The 
experimental data confirmed, to sufficient accuracy, the theoretical results 
(including, in particular, the detection of resonances under just the conditions 
indicated by the theory). However, the full clarification of the role of 
modulated waves in real boundary-layer breakdown and transition processes 
evidently   requires    much   further   work. 

Let us now continue the description of the work by Nayfeh and Bozatli. 
In their papers (1979b, 1980) these authors used the method of multiple scales 
to study of the nonlinear interactions between two two-dimensional T-S waves 
of different frequencies and wavenumbers and also between three such waves 
of frequencies cox, co2 >cox, and co2-cox. They found that a 2D wave of moderate 
amplitude  has   little   influence    on its 2D subharmonic    and  therefore    a 2D wave 
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of frequency co and moderate amplitude cannot generate a fast growing 2D 
wave of frequency co/2 [this result clearly confirms the conclusion of the 
paper (1979a)]'. However, a 2D wave has a strong influence on its second 
harmonic, so a moderate-amplitude wave of frequency co may generate a 
secondary wave of frequency 2co. Moreover, waves of frequencies cox and co2 

have a strong influence on a wave of frequency co2-co{ often making it 
unstable (i.e., growing in time). Many of Nayfeh and Bozatli's results were 
verified in experiments by Saric and Reynolds (1980) in which a vibrating 
ribbon in a boundary layer was used to excite either one plane wave of fixed 
frequency cox or two plane waves of frequencies cox and co2. [This experiment 
was stimulated by the similar one by Kachanov et al. (1980) where oscillations 
of two frequencies were introduced in a boundary layer by two separate 
ribbons.] In particular, the experiments showed that a primary plane wave of 
frequency co^ may generate a plane wave of frequency 2a>} with an amplitude 
approximately twice that of the primary wave, but no cases of generation of 
subharmonic waves with frequency coxl2 were detected. When waves of two 
frequencies «, and co2 were introduced into the flow, secondary waves of 
frequencies cox - co2 (and also 2cox - co2) were detected, but the streamwise 
development of their amplitudes did not follow the predictions of Nayfeh and 
Bozatli. In fact, Saric and Reynolds' experimental data agreed satisfactorily 
with some of Nayfeh and Bozatli's theoretical results but strongly disagreed 
with others; hence revision of the theory seems necessary. However, this 
subject will not be discussed further here, since all the instabilities considered 
in Nayfeh and Bozatli's papers led to much smaller growth rates than those 
corresponding to the three-wave resonances, and therefore these instabilities 
can hardly play an important part in transition of a boundary layer to 
turbulence. 

Still later Nayfeh (1985) showed that if a two-dimensional primary T-S 
wave in a Blasius boundary layer is disturbed by a single secondary T-S wave 
which has a frequency and streamwise wavenumber equal to half of those of 
the primary wave but is three-dimensional, with spanwise wavenumber k2 

larger than some small critical value, then the principal parametric 
resonance become very effective and leads to fast growth of the secondary 
wave. This result clearly agrees well with those considered earlier in this 
subsection. 

The secondary-instability problem considered by Nayfeh (1985) [and 
also those studied by Herbert (1983b, 1984a), Herbert et al. (1987) and Bertolotti 
(1985)] deals with the principal parametric resonance in a boundary-layer 
flow, which leads to the appearance of subharmonic 3D waves and of the 
staggered vortical structure shown in Fig. 5.8b. Recall now that in the K- 
regime of the evolution of a disturbed boundary layer observed by Klebanoff 
and his co-authors an ordered, and not staggered, vortical structure was 
observed. Trying to simulate this regime, Nayfeh and Bozatli (1979c) [see also 
Neyfeh (1987a,b)] introduced a four-wave instability model. In the Nayfeh- 
Bozatli (N-B) model four different O-S waves interact with each other in a 
boundary-layer flow: they are the primary plane wave with frequency and 
wave vector (co, k, 0); its second harmonic, a plane wave of frequency 2<yand 
wave vector (kx~2k, 0); and two oblique waves with frequency and wave 
vectors (co, k, ±k2). The downstream propagation of the N-B wave system was 
analyzed by Z-M (1984, 1989, 1993a), who determined the values of all 
interaction coefficients of the corresponding system of four amplitude 
equations, and performed numerical integration of this system for a number 
of   initial   conditions.   Here,   in   fact,   two   different   resonances   are   simultaneously 
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realized - resonant growth of the second harmonic stimulated by the first one, 
and fast growth of two oblique waves produced by Craik's three-wave 
resonance interaction of the amplified second harmonic with a pair of oblique 
waves with half the preimary frequency co. The spatial development of the 
four-wave system leads to generation of an ordered system of vortices, 
sketched in Fig. 5.8a and typical of the K-regime of instability development. 
Since in this section we are discussing only the N-regime, and not the K- 
regime, the N-B model will not be considered here in any detail (but it will be 
mentioned  in  the next Section,  Sec.  5.5,  devoted to  study  of the  K-regime). 

5.5.   WEAKLY-NONLINEAR INSTABILITIES IN THE K-REGIME OF 
BOUNDARY-LAYER DEVELOPMENT 

The K-regime of the boundary-layer instability development 
was discovered and explored in the late 1950s and early 1960s by 
Klebanoff and his co-authors. In this book, these results were very 
briefly considered in Sec. 2.1 (where even the name 'K-regime', 
which marks Klebanoff s contribution, was not mentioned) and, in a 
little more detail, were presented in the beginning of Sec. 5.2 with a 
subsequent brief mention in the beginning of Sec. 5.3 where the 
name 'K-regime' first appeared. Below some recent studies of this 
regime will be described at greater length; therefore, it is 
appropriate to make here some additional remarks about its main 
features. 

In Sec. 5.2 it was indicated that Klebanoff et al. (1962) studied 
the downstream evolution of the three-dimensional structures which, 
according to the results of a number of earlier experimental 
investigations, regularly appear at some downstream position in a 
laminar boundary layer containing somewhere in the beginning of it 
a vibrating spanwise ribbon exciting in the flow a two-dimensional 
linearly-unstable T-S wave. Since Klebanoff et al. were interested 
first of all in the spatial development of the appeared 3D structures, 
they generated artificially a weak spanwise periodicity of the 
amplitude of ribbon vibrations (with the same spanwise wavelength 
Ay which was earlier observed in boundary layers excited by ribbon 
vibrations with y-independent amplitude). Then the amplitude of the 
y-periodicity of the streamwise disturbance velocity was measured ^^ 
at different values of the streamwise coordinate x.i The obtained J 
results (some of them are shown in Fig. 5.20) showed that spanwise 
modulation of the disturbance velocity grows rapidly with x 
producing a specific peak-valley wave structure with a constant 
'fundamental spanwise wavelength' Xy. As it was indicated in Sec. 
5.3, later it was found by other authors that this structure consists of 
a strictly   ordered   collection  of streamwise    'A-vortices'   and  that   two 
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quite different orderings of vortices are realized in the cases of large 
and small amplitudes of the initial two-dimensional T-S wave (see 
Figs. 5.8a,b above and the text relating to them). Klebanoff et al. 
considered only the case of relatively large initial ■ T-S waves and 
therefore they dealt only with a regularly ordered vortical structure 
of the type shown in Fig. 5.8a (but the authors did not use flow 
visualization and therefore could not observe the ordering of 
vortices). However, hot-wire-anemometer measurements by 
Klebanoff et al. allowed them to discover that in the studied case of 
large T-S-wave amplitude the bursts of high-frequency velocity 
oscillations of short duration regularly appear (and then are repeated 
within each period of the primary T-S wave) at downstream peak 
positions of the spanwise velocity distribution. These high-frequency 
bursts were called "spikes" by Klebanoff et al. since some spikes are 
seen in the traces of disturbance velocity against time (see Fig. 5.21). 

In the course of their downstream evolution spike structures 
are doubled (see Fig. 5.21 again), then tripled and so on. Klebanoff et 
al. associated the spikes with the formation in the flow of a family of 
small hairpin-shaped vortices produced by the inflectional instability 
of high-shear layers formed around the large-scale vortical 
structures. The 'legs' of hairpin vortices may be gradually converging 
in the course of their evolution; this process may explain, in 
particular, the formation of 'ring vortices' which are also sometimes 
observed in the later stages of the K-regime. According to Klebanoff 
et al. a breakdown of medium-size vortices into smaller and still 
smaller vortical structures leads at first to the appearance of spikes 
and then to transformation of spikes into wholly irregular "turbulent 
spots" which are the precursors of the final transition to turbulence. 
Because of the connection with irregular turbulent spots the spikes 
were long considered as also irregular ("random") embryos of the 
future spots. Moreover, in the accordance with the point of view of 
Klebanoff et al, it was also long assumed that spikes arise from local 
(both in time and space) inflections of the disturbed Blasius velocity 
profile. In fact, it can be shown that near the inflection points 
produced by a low-frequency disturbance, a strong flow instability to 
high-frequency oscillatory disturbances must be developing locally 
[this statement was due to Betchov (1960) and its support by 
Klebanoff et al. (1962) made it quite popular afterwards; see, e.g., 
numerous references to subsequent studies of the 'local high- 
frequency secondary instability' (briefly, LHSI) in reviews by Nayfeh 
(1987a) and Kachanov (1991a, 1994a) and the paper by Kachanov et 
al. (1993)]. However, as will be explained later in this section, in the 
late  1980s  and early  1990s  it was discovered   that  apparently   spikes 
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have quite another origin, are not 'wholly irregular', and their 
transformation into "turbulent spots" does not occurs at once but 
only after some specific intermediate stages. Moreover, some more 
recent experimental and numerical-simulation data give the 
impression that the origin of ring vortices may differ from that 
sketched above; this topic will be also discussed later in this section. 

Among the first experimental results relating to the K-regime 
were those of Nishioka et al. (1975, 1980) [see also Nishioka (1985), 
Nishioka and Asai (1985a,b) and Asai and Nishioka (1989)] who 
performed detailed measurements of the instability development in 
a plane-channel flow. This flow is usually modeled as plane Poiseuille 
flow, but it has many features similar to those of Blasius boundary- 
layer flow. In particular, it was shown in the above-mentioned 
papers [and also in the similar experimental work of Kozlov and 
Ramazanov (1981, 1983, 1984a,b)] that plane-channel flow may also 
undergo K- and N-regimes of instability development. And studying 
the K-regime of disturbance growth in a channel-flow Nishioka et al. 
obtained the first experimental corroboration of the fact that LHSI 
may really take place during the K-regime of the flow development. 
However the channel-flow instabilities will be considered at length 
only in the next Chap. 6; so now we will go over to discussion of the 
original research and survey papers by Kachanov et al. (1984, 1985, 
1989), Borodulin and Kachanov (1988, 1989, 1994, 1995), Kachanov 
(1987, 1990, 1991a, 1994a,b), Dryganets et al. (1990), Bake et al. 
(1996, 2000), Lee (1998,2000), and Lee et aL (2000) [see also the 1<^X. 
recent books by Boiko et al. (1999) and Schmid and Henningson 
(2000)] where many results of recent experimental studies of K- 
regime  in  boundary  layers   are  presented. 

The experiments described and discussed in the above- 
mentioned papers and books often (but not always) were based on 
the use of the experimental method which was first tested by 
Klebanoff et al. (1962) and then became quite popular. This means 
that here again the laminar boundary layer on a flat plate placed in a 
wind tunnel was disturbed by a spanwise-oriented vibrating ribbon, 
and simultaneously a weak spanwise nonhomogeneity of the 
resulting disturbance was artificially produced by an array of 
identical pieces of tape placed beneath the ribbon. However, in 
contrast to the earlier experiments by Kachanov et al. (1977, 1978, 
1980), in all the experiments considered here the amplitude of 
ribbon fluctuations was chosen to be so great that it guaranteed the 
realization of the K (and not N) regime of disturbance development. 
Moreover, the authors tried to make the experimental conditions as 
close   as   possible   to   those   of the   experiment    by   Klebanoff   et   al. 
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(1962). But the new experiments differed from the early studies of 
Klebanoff s group by more sophisticated measurement techniques 
and by more careful investigation of the frequency (and spanwise- 
wavenumber) composition of the velocity fluctuations at various 
points x = (JC, y, z) of the boundary layer. 

Passing to the consideration of these more recent experimental 
studies of boundary-layer instability development, one must note 
first of all the results of Borodulin and Kachanov (1988). These 
authors showed that LHSI does in fact occur in boundary layers but 
leads to some special nonlinear effects, which must be distinguished 
from the production of spikes. The point is that spikes usually appear 
at considerably greater 'height' (distance from the wall) than the 
velocity-profile inflection (which is expected to be the site of any 
quasi-inviscid instabilities) and have amplitudes exceeding those of 
LHSI-produced formations. Borodulin and Kachanov (1988) [see also 
the subsequent discussion of their results in the surveys by 
Kachanov (1990, 1991a, 1994a,b) and Borodulin and Kachanov 
(1994, 1995) and the theoretical papers by Zel'man and Smorodsky 
(1991a,b) and Kachanov, Ryzhov and Smith (1993)] often observed 
both types of nonlinear formations at the same values of coordinates 
x and y but quite different values of the vertical coordinate z. The 
lower formations were always observed just at the heights of 
velocity-profile inflections, and the measurements agreed very well 
with theories of local high-frequency secondary instability [see e.g. 
the discussion of this matter in Kachanov et al. (1993) and the papers 
cited there by Smith, and by Smith and co-authors on this subject]. 
However the spikes [whose importance for boundary-layer 
instability development was demonstrated quite early by Klebanoff 
et al.  (1962)]  certainly have an origin unrelated to LHSI. 

Spectral analysis of velocity fluctuations performed by 
Kachanov and his co-authors showed that in the K-regime of 
boundary layer development numerous higher harmonics of the 
primary 2D wave, with frequencies con = nco, n = 2, 3, ..., and values of 
n up to several tens, always exist in the flow together with the 
oscillations of frequency a>i=co equal to that of the ribbon vibrations 
and of the primary plane wave produced by them. Thus, an 
amplitude of the primary wave larger than that leading to the N- 
regime leads to an intensity of high-harmonic generation much 
greater than in the N-regime. 

Klebanoff et al. did not observe so many higher harmonics of 
2D velocity oscillations and did not pay much attention to them, but 
according to Kachanov et al. (1984,   1985,   1989)   these  harmonics   are 
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highly important in the K-regime. Therefore, the latter authors 
concluded that Klebanoff et al. underestimated the role of higher 
harmonics of the primary wave. However, Rist and Fasel (1995), who 
performed careful numerical simulation of the K-regime of 
boundary-layer instability development as observed by Kachanov et 
al. [using in this simulation the same model of disturbance generator 
as that used by Fasel et al. (1987), whose work was discussed in Sec. 
5.4] disagreed with the above-mentioned conclusion. Rist and Fasel 
indicated that although Kachanov et al. tried to repeat experiment by 
Klebanoff et al. very accurately, there were nevertheless some small 
differences in experimental conditions. These differences led, in 
particular, to a considerable greater initial value (measured just 
downstream of the vibrating ribbon) of the ratio A2^/Ax of the 3D- 
wave amplitude to that of the primary 2D wave in the experiments 
of Kachanov et al. than in the similar experiments of Klebanoff et al. 
This explains why fewer higher 2D harmonics were significantly 
excited in the experiments of Klebanoffs group, and there these 
harmonics really were of somewhat smaller importance. However, 
almost all the experimental results of Kachanov et al. (1984, 19 85) 
were confirmed, with high accuracy, by Rist and Fasel's numerical- 
simulation data [see also the papers by Rist and Kachanov (1995) and 
Rist (1996), where some supplementary numerical data are 
presented]. 

Kachanov et al. measured downstream-growth curves for the 
amplitudes of various higher harmonics of the primary oscillation, 
and found that these amplitudes begin to grow rapidly at 
approximately the same value of x at which the primary-plane- 
wave amplitude begins to grow faster than predicted by linear 
stability theory. The streamwise growth of amplitudes of the 
primary wave and its higher harmonics is arrested (and is sometimes 
replaced by a decrease) just in the region where spikes appear [see 
Fig. 5.22 where data about the spatial growth of the first 6 harmonics 
are presented together with data relating to growth of the total 
disturbance intensity; amplification curves for 17 harmonics may be 
found in Borodulin and Kachanov (1988) and Kachanov (1994a)]. 
According to Kachanov et al., the spike, i.e. the short-term highly- 
localized outbreak of high-frequency oscillations is produced, not b y 
a sudden rapid increase of intensity of all higher harmonics, but b y 
the local (valid within short ranges of y and z values) phase 
synchronization of all harmonics shown in Fig. 5.23, leading to strong 
amplification of the observed oscillations. (As indicated above, the 
spanwise coordinate y of a spike was found in all cases to be close to 
a peak position of the spanwise wave shown in Fig. 5.20.)    Therefore, 
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the new theory considered spikes not as random formations but as 
regular structures, naturally produced by deterministic evolution of 
the Fourier composition of the appearing upstream flow 
disturbances. The experimental data shown in Figs. 5.22 and 5.23 
were later confirmed by observations of the Novosibirsk group, and 
also agree very well with the results of thorough direct numerical 
simulations of the K-regime by Kloker (1993), Rist and Fasel (1995) 
and Rist (1996) [see also the paper by Rist and Kachanov (1995) 
where new numerical-simulation results were compared with the 
new measurements from Novosibirsk].6 The regular character of 
spike structures was also confirmed in careful experiments (which 
will be discussed in Sec. 5.52) by Breuer et al. (1997) devoted to 
study of development of some localized disturbances in a boundary 
layer- see also the survey paper by Bowles (2000). Thus, the data 
presented in Figs. 5.22 and 5.23, and the new explanation of the 
origin   of spikes   following   from   them,   may   now   be   considered    as 
reliable. . 

Using the data of the Novosibirsk experiments (of which Mgs. 
5 22 and 5.23 represent only a small part), Kachanov (1987) [see also 
his papers (1990, 1991a, 1994a,b)] proposed a wave-resonance 
theory of the K-regime of boundary-layer instability development. 
This theory assumes that K-regime leads to the emergence of a 
cascade of successive four-wave resonances, generalizing the four- 
wave resonance studied by Nayfeh and Bozatli (briefly, N-B) in the 
paper (1979c). Recall that N-B resonance includes 2D and 3D waves 
with frequency-wavevector combinations (2co, k, 0), (co, k\ 0), and (co, 
k", ±k2), where k » 2k', k" ~ k\ and k2 = k0 corresponds to the 
spanwise periodicity of 3D disturbances observed in experiments b y 
various authors (i.e., to the fundamental wavelength Xy of spanwise 
waves seen in Fig. 5.20). It was also noted in Sec. 5.4 that this 
resonance generates the vortical system typical of the K-regime of 
boundary-layer development. According to Kachanov, there is a 
cascade of resonances leading to the rapid growth of 3D structures in 
the   K-regime   comprising   resonances    among   quadruples    of  waves 

6 In  Sec   5 4   attempts by Wray  and Hussaini  (1984), Zang and Hussaini  (1985, 
1987    1990)' Spalart  and  Yang  (1985),  Murdock  (1986),  Launen  and  Kleiser 
(1989)   Kleiser and Zang  (1991),  Zang (1992)  and some others  to  simulate 
numerically    the   boundary-layer   instability    development   were   mentioned^ 
These  papers   contain   a  number  of  results   relating   to   the   K-regime   of  such 
development   and   almost   all   of  them   agree   satisfactorily   with   available 
experimental   data.   However,   these   results   are   less   accurate   and   less   complete 
than  those by  Rist  and Fasel  (1995)  and Rist  and  Kachanov  (1995);  therefore 
results   of  the   earlier  numerical   simulations   of  the   K-regime   will  not  be 
considered   in   this   book. 
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with frequencies and spanwise wavenumbers («i©, 0), (nco, 0) and 
(nco, ±mk0). Here nh n and m are integers, m = 1, 2, 3, ..., n = nxll, 
mk0 = k2, where k2 is the spanwise wavenumber corresponding to 
spanwise periodicity of small-scale disturbances while k0 is the 
'primary' (or 'fundamental') spanwise wavenumber mentioned 
above, describing the spanwise waves which appear in experiments, 
either' naturally or as the result of artificial disturbances such as 
pieces  of tape under a vibrating ribbon. 

These    wave    quadruples     may    be    produced     by    nonlinear 
interactions of waves of the same type but with  smaller  values   of nu 

n and  m.    The ensuing   interactions   among   the   quadruples    may   be 
resonant   and   similar   to  those   taking   place   in the   case   of an   N-B 
quadruple  where  m = 2 and n = m = 1. Kachanov  (1987)   showed  that 
the    above-mentioned     cascade    of   resonances     may    lead    to    the 
appearance    of spikes   at   the   locations    where    they    were    actually 
observed   in experimental   studies   of the   K-regime.   Slightly   later,   a 
numbers   of waves   which may participate   in 'Kachanov's resonances' 
were   identified   in  observations    of the   K-regime   by   Borodulin   and 
Kachanov   (1989,   1994)   [see also  Kachanov   et  al. (1989),   Kachanov 
(1990,    1991a,    1994a,b)].   Borodulin   and   Kachanov   found   that   for 
some ' Kachanov's wave  quadruples,   the phase   velocities   of the  four 
waves   were   quite   close   to   each   other,   making    strong    four-wave 
interaction   quite  probable.   They  also stated   that  at n = 1  and   2 the 
most rapid growth of the oblique waves present in these    quadruples 
is reached   for m « 4 to 7. Kachanov's  cascade   of resonances   clearly 
fills    the    high-frequency      and    high-wavenumber      parts     of   the 
frequency       and      spanwise-wavenumber       spectra      (these      parts 
correspond   to small-scale   oscillations  of 'spike type') but it does  not 
generate      'genuine     subharmonics'      corresponding      to    large-scale 
oscillations. 

Kachanov's wave-resonance theory did not seriously contradict 
the numerical-simulation results of Rist and Fasel (1995) who found 
that the higher spanwise harmonics of the primary 2D wave, which 
correspond to the 3D (nco{ +mk0)-modes with n = 1, m = 1, 2, ..., 8, 
appear in the flow successively and then begin to grow rapidly with 
downstream distance x, while their initial growth rates increase with 
m, reaching a maximum for m =7 and 8 (see Fig. 5.24; 
supplementary data may be found in Rist (1996), where similar 
growth curves are also given for some (n,m)-modes where n = 0 or 
2). This figure shows that all the modes considered reach 
approximately the same saturation level at x = 420 mm, which is 
close  to  the   position   where   spikes   first   appear.    However,   a  more 
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thorough   treatment    of the   results    of a  subsequent,    more   refined 
numerical   simulation   of the   same   type   carried   out by  Rist led to a 
conclusion   differing   from   that   formulated    above.   New   numerical 
results    presented   in Rist and Kachanov  (1995)   and Rist (1996), give 
a   clearer    picture    of  the   flow   than    that    derived    from    previous 
experiments    and   simulations.   As pointed   out  in these   papers,   the 
new results  showed large  amplification rates  of spanwise modes  with 
high values  of m [cf. also the related   earlier  results   by Zang (1992)], 
which    cannot    be    explained    by    the    resonances     considered     by 
Kachanov   (1987).   According   to  the   papers   of 1995   and   1996,   the 
modes   corresponding   to m = 2, 3, ..., 8,  are   apparently    just  higher 
harmonics   of the   (U)-mode   produced   by   non-resonant    nonlinear 
interactions.   If so, then   their   amplification   with   x must   be  of the 
same origin as the amplification of higher  temporal   harmonics   of the 
primary   T-S mode  and of other  products   of non-resonant   two-wave 
interactions    (cf. the   amplification   curves   in  Fig. 5.12).   It   is  clear, 
however,   that  a final solution  of the  numerous   problems   relating   to 
the origin and  subsequent   evolution   of higher   2D and  3D instability 
modes   in  the   K-regime    of  boundary-layer     development    requires 
much   additional   work. 

Note in conclusion that Rist and Fasel (1995), Rist and Kachanov 
(1995),   and  Rist (1996)   also   used   numerical-simulation    results   for 
the    preliminary     investigation    of   various     3D   vortical    structures 
appearing   in the  K-regime,   and  compared   the   computed   structures 
with   experimental    data.   Particular   attention   was   paid   here   to  the 
study   of the A-shaped   structures   ('A-eddies')  observed   in numerous 
flow-visualization  experiments   (see,   e.g., the visualization   pictures   in 
Fig. 5.8a; two examples of A-structure  given by numerical-simulation 
results   are   shown   in Fig. 5.25).  Rist and   Kachanov   also  noted   that, 
according    to   the   new    simulation    data,    at   a   late    stage    of   flow 
development   (which  corresponds   to the appearance   and  subsequent 
multiplication    of   spikes)    ring-like    vortices    connected    to    spikes 
emerge,   pinching  off from the  downstream    'tips' of the  pre-existing 
A-vortices.   (This  mechanism   of generation   of ring   vortices   clearly 
differs   from  the  previous   suggestions   sketched   in the   beginning   of 
this section where results of the early experiments of Klebanoff et al. 
were   discussed.)   The  numerical   results   showed   the   appearance    of 
'spikes'   at   the   same   points,    and   with   the   same    amplitudes    and 
durations,      as     those     which     were      observed      in     wind-tunnel 
experiments; one such example is shown in Fig. 5.26. 

Recall now  that  when   the  results   of Bake et al. (1996,   2000) 
relating   to the  N-regime   of boundary-layer    instability   development 
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were   briefly   reviewed   at the  end  of Sec. 5.3, it was  promised   that 
similarities between some features of the N-  and K-regimes  found by 
these authors would be described in Sec. 5.5. It was noted  m Sec. 5.3 
that the wind tunnel used by Bake et al.   had a very  long test  section 
and only the results relating  to the initial part  of it agreed  well with 
experimental   data  from previous   investigations   of the  N-regime.   (It 
was said in Sec. 5.3 that  such agreement   was observed   for Ax <25 0 
mm,   where    Ax is  the   streamwise    distance   between    the   point   of 
measurements     and    the    disturbance     generator.    In   fact   the   first 
deviations    from    the    ordinary    N-regime    were    observed    by    the 
authors   as early  at Ax = 220 mm, but they  were  weak  enough  to b e 
ignored for the purposes of Sec. 5.3.) The main study of the structure 
of developed   disturbances   far from   the   disturbance    generator   was 
made by Bake et al. at Ax = 380 mm and here the behavior was quite 
different   from   that   observed   earlier   in  the   N-regime;   in  fact,   the 
measurements    represented    some  mixture   of features   typical   of the 
N- and  K-regimes.   At Ax = 380  mm  strong   spanwise   modulation   of 
streamwise   disturbance   velocity,  of the type  shown  in Fig. 5.20, was 
clearly seen (faint signs of such modulation were present at Ax = 220 
mm)    and,   what    is   especially    important,    Klebanoff    'spikes'   very 
similar   to   those   observed    repeatedly    in   the   K-regime    were    also 
present.    The   spikes   had   the   same   shape   as  in  the   case   of the   K- 
regime,   and again they   appeared   in the  outer   part   of the  boundary 
layer at spanwise peaks of disturbance velocity and could be doubled 
and tripled.  However, in contrast to the K-regime,  they now appeared 
periodically   in time  with  the  subharmonic   period  Tx = 2n/cov2 = 4K/COX 

and  not with   the   primary-wave    period   T = 2%/(£>x (where   mx is the 
'fundamental   frequency'   of the  primary   2D wave   and   com = coxl2). 
Moreover,    the    vortical    structure     generated     by    the    developing 
disturbances    again    consisted    of   A-vortices,    but    they    were    now 
positioned in space in the staggered order shown in Fig. 5.8b,  and not 
regularly   as in Fig. 5.8a.  However,   in spite   of these   differences,   the 
subsequent   development   of spikes  and vortices   was  very   similar   to 
that   observed   in late   stages   of K-regime   development.    Therefore, 
there  is  reason to  assume  that prolonged  N-regime  development may 
lead  to  transition   of a boundary    layer   to  turbulence    by  the   same 
process   that   takes   place   at  large   amplitudes    of the   primary   wave 
leading  to  the  K-regime  of boundary-layer  development. 

Let us now consider briefly the results relating to the long-time 
evolution of spikes appearing in the K-regime of instability development. This 
topic   differs    from    the    subjects    considered    above,    since    spikes    have    some 
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features    which    invalidate    standard    methods    of   weakly-nonlinear      stability 
theory     Observations    by   Kachanov    et al.  (1984,   1985,   1989),   Borodulm    and 
Kachanov  (1988'   1989    1994,   1995)  and some others  showed that spikes include  a 
great   number    of phase-synchronized     2D and   3D modes   strongly    interacting 
with  each   other   (cf.  Figs. 5.22-5.24).  Therefore,    ordinary    systems   of equations 
for  mode amplitudes   are  of little   use  in   this   case.   Recall   now   that   spikes   are 
localized   in  small   spatial   domains   (spanwise    localization    is especially    strong; 
see eg   Fig   5 23)   Observations   also showed   that   a newly-formed    spike   at first 
moves 'away   from   the   wall   but   on  reaching    the   upper   part   of the   boundary 
layer    it  moves   downstream    at  practically     constant    z,  and   with    practically 
constant  velocity  close  to  that  of  the  external  stream   [see Fig. 5.27a,b  and  their 
discussion   by   Kachanov    et  al.  (1993),   accompanied    by   some   supplementary 
data-  similar   results   were   obtained   by Acarlar   and  Smith   (1987)   for   evolution 
in  a'  boundary   layer  of  "hairpin   vortices",   which   are   similar  to   spikes   in   many 
respects]    During  its   downstream  travel  a  spike  preserves   its   shape   (and  also   its 
spatial size and temporal extent),  i.e. it does not disperse as  do, for example    the 
ordinary     wave   packets    in    which     individual     waves    have    different     phase 
velocities  determined  by  the  dispersion  law   (5.5).   Not  only   the   spatial   form   but 
also  the   spectral    composition    and   the   amplitude    of a spike   are   in   the   main 
preserved    during    its   convection     downstream.     This   circumstance     was   first 
stressed    by   Borodulin    and   Kachanov     (1988)   and   was    confirmed     by   their 
subsequent   experimental   studies;   see   also   Kachanov's   surveys   (1991a,   1994a).   It 
allows   spikes,   once   fully-formed,    to be considered   as  coherent    structures, i.e. 
flow   formations   with   a  definite   degree   of ordering    which   is preserved    during 
long    time    intervals.     The    term     'coherent      structure'      appeared     in    fluid 
mechanics    only   in  the   second   half   of the   20th   century    and   was  not   at once 
universally     recognized    [for   example,    it  was   not   used   at  all   by   Monin    and 
Yaglom   (1971     1975)],   but   now   it  is   clear    that    such    structures     play   a  very 
important  part'in   the  mechanics   of  turbulence   [see,   e.g.,   the  book  by   Holmes   et 
al    (1996)]    Note    however,   that   coherent   structures   of  many   different   types   are 
met    in    fluid    mechanics,     especially     in    fully-turbulent      flows,    and    spikes 
represent    a very   special   type   of such   formations.    Spikes   appear  .in   laminar 
flows   at a relatively    late   stage   of instability    development;    they   are   strongly 
localized,   mobile,   and   have   definite   boundaries,    and   thus   may   be   associated 
with the notion  of solitons. 

The term 'soliton' was apparently first introduced by Zabusky and 
Kruskal in their paper (1965) devoted to plasma waves, but in fact it has along 
history being directly connected with the observation by J. Scott Russell in 
1834 of a strange solitary wave in the Edinburgh to Glasgow canal. The wave 
was produced by a suddenly stopped boat and had the form of a rounded well- 
defined heap of water elevated above the mean level and for a long time 
rapidly moving forward (i.e., in the direction of boat motion before the stop) 
without any change of form or speed - Russell pursued it on a horse for more 
than a mile. This observation stimulated subsequent attempts by Russell to 
generate such waves in the laboratory, and led to publication in 1844 of his 
report to the British Association for the Advance of Science devoted to this 
subject Russell's solitary wave attracted considerable attention, but only in 
the second half of the 20th century was it discovered that it represents a 
particular case of a wide class of flow phenomena which are met in many 
parts of quite different physical sciences, and have numerous important 
applications At present soliton studies form a special science to which a n 
enormous and very diverse literature has been devoted [here it will be enough 
to name only the relatively small introductory books by Lamb (1980), Drazin 
(1983)   and   Drazin   and   Johnson    (1989)].   Up  to  now   there    is  no   universally 
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recognized strict definition of the soliton; to follow Drazin's books one may say 
that this word means usually a solution of a nonlinear equation or system of 
equations which describes a wave or collection of waves of a conservative 
form which is spatially localized, mobile, and may strongly interact with other 
objects   of  the   same   type,   retaining   its   identity   after   the   interaction. 

Kachanov and his group stressed the similarity of spikes to solitons 
mainly on the basis of their localization and conservation of form. However, 
the relation of spikes to coherent structures was also emphasized by this 
group; therefore Kachanov suggested applying to spikes the new name 'CS- 
solitons' (CS for 'coherent structure', hence 'CS-soliton' may be deciphered as 
"solitonlike coherent structure'). This name indicates the special place of 
spikes in both collections - of coherent structures and of solitons. As indicated 
above, solitons usually represent some special solutions of a definite nonlinear 
equation or equations (in particular, the strict theory of Russell's 'solitary 
waves' emerged when Korteweg and de Vries (1895) discovered the nonlinear 
equation for surface waves in a liquid of finite depth and proved that this 
equation has solitary-wave solutions). Therefore, the identifications of spikes 
with a special kind of soliton seemed incomplete without a nonlinear equation 
to   describe   them. 

The first attempts to develop an analytical theory of the soliton-like 
formations in flat-plate boundary layers were made independently by Zhuk 
and Ryzhov (1982) and Smith and Burggraf (1985). In both papers the 
boundary-layer disturbances considered were those which, in the case of 
small enough amplitude and large streamwise length scale, may be described 
with good accuracy by the so-called Benjamin-Ono (briefly, B-O) equation, a 
nonlinear    integro-differential    equation    of   the    form 

—- + A — = -   — —d£ + (p(t,x) (5.16) 
dt        ox     TC i^   q-x 

where A =A(x,t) is the unknown amplitude of the disturbance [replaced in the 
integrand by A(£,t)], the integral, if divergent, is understood as the Cauchy 
principal value, while (p(t,x) is the 'source term', which may be absent in some 
cases but in others may have different origins and forms. Eq. (5.16) [without 
the source term] was derived by Benjamin (1967) and Ono (1975) [and used by 
Davis and Acrivos (1967)7] to describe the variation of amplitude of two- 
dimensional long internal waves of small amplitude in a stratified fluid of 
great depth, and it was shown by Benjamin and by Ono that this equation has 
soliton solutions of the same form as those known for the Korteweg-de Vries 
equation. Later it was discovered that the same equation may also be applied to 
many other nonlinear waves of large streamwise lengthscale and small 
amplitude in steady shear flows bounded by a wall [the above-mentioned 
papers by Zhuk and Ryzhov, and Smith and Burggraf and also those b y 
Goncharov (1984), Romanova (1984), Demekhin and Shkadov (1986), Benjamin 
(1992), and Matsuno (1996) are just typical examples]. However in these papers 
neither the K-regime of boundary-layer transition nor the spikes were 
considered    explicitly. 

Application     of   the    B-0   equation     to   the    development     of   strongly 
nonlinear   disturbances   in   a   boundary-layer   flow   was   studied,   in   particular,   b y 

7 Therefore   instead   of  the   name   'Benjamin-Ono   (or  B-O)   equation'   the   name 
'Benjamin-Davis-Acrivos   (or   BDA)   equation'   is   sometimes   used. 
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Rothmayer and Smith (1987). However here only a rather special one- 
parameter family of soliton solutions of the B-0 equation was considered, and 
these solutions' proved to be inappropriate to describe the spikes observed i n 
the K-regime. Then Zhuk and Popov (1989) found some new soliton solutions of 
Eq. (5.16) (with non-zero 'source term'), while Ryzhov (1990) investigated a 
more general three-parameter family of soliton solutions of the homogeneous 
B-0 equation (some important features of this solution are shown in Fig. 5.28). 
Ryzhov's investigation was continued by Kachanov, Ryzhov and Smith (1993), 
Ryzhov (1994), and Bogdanova-Ryzhova and Ryzhov (1995) who applied this 
and some related soliton solutions to a description of real fluid-mechanics 
instabilities [see also Kachanov's survey papers (1991a, 1994a) and an 
interesting survey by Ryzhov and Bogdanova-Ryzhova (1998) containing a 
long list of references]. In particular, Bogdanova-Ryzhova and Ryzhov (1990) 
studied the soliton solutions of the inhomogeneous B-0 equation describing the 
evolution of disturbances in a boundary layer on a rough wall (where the 
effect of roughness elements may be described by a definite form of the source 
term (p(t,x)). These authors also cited some papers in which the same equation 
was applied to development of atmospheric and oceanic waves affected by a 
mountain ridge or by large bottom irregularities, which also generated source 
terms, of a form different from that applying to the rough wall [for more 
details see Ryzhov and Bogdanova-Ryzhova's survey (1998)]. Detailed study of 
the solutions of the inhomogeneous B-0 equation and their applications to 
water-wave problems was carried out also by Matsuno (1996) whose paper 
contains   many   supplementary   references   relating   to   this   topic. 

Further, Ryzhov (1990) and Kachanov et al. (1993) showed that the 
determining parameters of Ryzhov's family of soliton solutions may be chosen 
so that the general form of these solutions, and a number of their numerical 
characteristics, are very close to those found by Kachanov (1991b), Borodulin 
and Kachanov (1988, 1994, 1995) and in some other experiments on Klebanoff's 
spikes in the early stage of their downstream evolution (see, e.g., Fig. 5.29). 
These results may be considered as the confirmation of the soliton nature of 
spikes. The deviations in Fig. 5.29 of the experimental results for far- 
downstream points of observation from the theoretical curves may be 
explained by the fact that B-0 equation deals only with two-dimensional 
disturbances; therefore it represents a two-dimensional spike model which is 
inapplicable to the later, essentially three-dimensional, stages of spike 
evolution. Many details of these later stages of spike development were 
discussed by Kachanov, Ryzhov and Smith (1993) and studied experimentally 
by Borodulin and Kachanov (1995). A generalization of the B-0 equation to the 
case of three-dimensional near-wall disturbances was proposed by Shrira 
(1989) in connection with the study of 3D waves in the upper layer of the 
ocean. Later Abramyan et al. (1992) proved that Shrira's equation has three- 
dimensional soliton solutions which may possibly be used to describe spikes i n 
the   three-dimensional   stage   of   their   evolution. 

It has already been mentioned that the time evolution of spikes leads 
finally to their transformation into 'turbulent spots'. Such spots (one of which 
is shown in Fig. 2.2) represent the spatial regions where the flow becomes 
truly turbulent, i.e. it becomes irregular, is accompanied by random 
('stochastic') fluctuations, and therefore cannot be studied mathematically 
without the use of probability-theory concepts. Recall that it was long assumed 
that randomization of the boundary-layer flow takes place when spikes 
(considered as irregular formations) first appear. However it was found later 
that   spikes   themselves    are   regular    structures    which    may   be   described    b y 
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deterministic equations of motion, while random velocity fluctuations emerge 
only at the later stages of spike development. The process of gradual 
development of the 'flow randomness' associated with spikes in an initially 
laminar boundary layer disturbed by a two-dimensional T-S wave was studied 
experimentally by Dryganets et al. (1990) whose results were discussed by 
Kachanov (1994a); see also the descriptions of experiments by Breuer et al. 
(1997) in Sec. 5.62. An analytical model of the gradual randomization of a spike 
and subsequent formation of a spot was briefly outlined by Smith in Kachanov 
et al. (1993) and then developed further by Smith (1995). Bogdanova-Ryzhova 
and Ryzhov (1995) considered the model of randomization of a soliton by a wall 
hump and then returned to the problem of the possible connection between 
solitons and the onset of random flow disturbances in Ryzhov and Bogdanova- 
Ryzhova (1998). Note in this respect that many different mechanisms may be 
responsible for the appearance of random fluctuations in real boundary-layer 
flows; a definite part may be played also by 'local high-frequency secondary 
instability' (LHSI) of a flow disturbed by a T-S wave, and by penetration into 
this flow of background (environmental) disturbances in the form of random 
2D and 3D T-S waves or wave packets, corresponding to the continuous part of 
the spectrum of the boundary-layer Orr-Sommerfeld eigenvalue problem. 
However a detailed analysis of the appearance of randomness in a laminar 
boundary flow lies outside of the contents of this chapter on weakly-nonlinear 
stability    theory. 

Note in conclusion that recent experemental studies of the K-regime of 
boundary-layer instability development by Lee [see Lee (1998, 2000), Lee et al. 
(2000) and references therein] lead to some results differeing from those 
considered above. Lee studied disturbance development in the boundary layer 
on a flat plate mounted in the low-turbulence water channel at Peking 
University. In these experiments a wave disturbance was excited in the flow 
by periodic pumping of water in and out of the boundary layer through a 
spanwise oriented narrow slit near the leading edge of the plate. Then the 
disturbance development was recorded by hot-wire measurements at a number 
of downstream positions and by numerous photos of the evolution of flow 
structures visualized by hydrogen bubbles. Lee used the tbe" name 'CS-solitons' 
to denote some new flow structures which fill out the whole thickness of a 
boundary layer and have quite different form in the near-wall region (where 
the long streaks appear at the 'peak positions' of the spanwise velocity 
modulation), in the middle part of the boundary layer, and in its upper part 
(where Kachanov's 'CS-solitons' were travelling most of the time). According 
to Lee, the upper part of CS-solitons is produced by short chains of ringlike 
vortices appearing periodically (with the same frequency as that of the 
primary T-S wave) at the tips of A-vortices which breakdown generates spikes. 
Lee's CS-solitons differ from Kachanov's ones, but both these formations are 
strongly localized spanwise and preserve their main features up to final 
breakdown (leading to the appearance of turbulent spots). Lee noted that some 
of his results are similar to those observed earlier by Hama and Nutant (1963) 
and Williams et al. (1984); as to the disagreements of some Lee's conclusions 
with those by Kachanov, they were partially gotten over in their joint work 
[see, e.g., Lee et al. (2000) and references in Lee (2000)]. Nevertheless, at 
present it seems that Lee's results require further careful investigation and 
that his claim on the possible finding of the 'universal transition scenaro' is 
questionable. However, since the 'transition scenarios' are only indirectly 
connected with the main content of the present chapter, Lee's results will not 
be   considered   here   at   greater   length. 
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5.6.   SOME OTHER SCENARIOS OF INSTABILITY DEVELOPMENT IN 
BOUNDARY LAYERS 

The     N-     and     K-regimes      of     boundary-layer       instability 
development  considered  in   the previous   section  of this chapter   have 
a very  important   common   feature   - in both   of them   the  instability 
process  starts  with the  appearance   in the flow of a linearly-unstable 
two-dimensional   Tollmien-Schlichting   wave.   [This T-S wave   is often 
identified   with   that   solution   of the   O-S eigenvalue   problem   (2.42), 
(2.44)   corresponding    to   the   eigenvalue    co    (or   k)   which   has   the 
maximal (or minimal if k    is the O-S eigenvalue) imaginary part. Such 
identification     is    then    justified     by    the     assumption      that     any 
disturbance to excite a T-S wave may enter the boundary   layer from 
the   disturbed    free-stream    flow,  and   hence   the   most-unstable    T-S 
wave must play the dominant role in boundary-layer   evolution.]  The 
simplest   case,  the   instability   regime   initiated   by   a sole  plane   T-S 
wave,  was  investigated in the famous  experiments  by  Schubauer   and 
Skramstad   (1947)   and   in numerous    subsequent    similar   boundary- 
layer  stability   studies   (including   all the   experimental    studies   of the 
N- and  K-regimes   considered   above)   which   used   a vibrating   ribbon 
(or  some   other   periodically-oscillating    device)   for  the   excitation   in 
the flow of a weak 2D wave of fixed frequency co.    Recall however the 
remark   made  in Sec. 2.92 (p. 118)  which  stated   that  in the' majority 
of boundary-layer  transitions   to  turbulence  met  in   wind-   and  water- 
tunnel   experiments   and  in real  life the  appearance   in the  flow of an 
isolated   linearly-unstable    T-S wave   of small   amplitude    growing   in 
accordance with the laws of linear stability theory, is not observed   at 
all, i.e. this stage  of instability   development   is by-passed. Therefore, 
the   scenarios   of the  boundary-layer    instability   development    which 
begin with the appearance in the flow of the most-unstable plane T-S 
wave of small amplitude   are inapplicable   to the majority   of real-life 
boundary-layer-transition    phenomena.     Note that   the  term   by-pass 
transition  is often used in engineering   practice  to describe   response 
to such high levels of free-stream turbulence  that  transition   starts   at 
Reynolds  numbers     far below   the  critical  value   predicted   by linear 
instability    theory,    so   that   no   stage   of  the   route    to   randomness 
discussed   above,   nor   the   behavior    of the   simple   finite-amplitude 
subcritical modes discussed in Sees. 5.3  and 5.4 have any relevance. 

In this book no attempts will be made to consider all scenarios 
of boundary-layer instability development and transition to 
turbulence met in practice.  However,   at least some of the regimes   of 
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instability     development     differing     from    the    N   and    K   regimes 
considered  above must,  clearly,  be discussed here. 

5.61.    Oblique    and   Streak-Breakdown    Transition    Scenarios 

Let us begin with a remark   about   the  paper   by Goldstein  and 
Choi (1989).   These   authors   considered   the   case   of a plane-parallel 
shear    layer    ("mixing   layer")   between    two   parallel    streams    with 
uniform  velocities   Ux and  U2 *UX. Then they  studied   the evolution  in 
this flow of a pair  of linearly-unstable    symmetric   oblique   waves   of 
the  same  amplitude A   and frequency   ©.with  two-dimensional   wave 
vectors  kx = (ku k2) and k2 = (*i, -k2). The waves were assumed to be 
harmonic   in time   (i.e.,  co   is real)   but   streamwise-growing    (fci     is 
complex   with   a negative   imginary   part   while   k2 is real).     It   was 
found that the two waves strongly interact with each other and,  as in 
the case of Craik's resonant   triads   satisfying   conditions   (5.7),  strong 
nonlinear   wave   interaction   is concentrated   in the   neighborhood   of 
the common critical layer of these  two waves.  Using known  methods 
of approximate   asymptotic   analysis   of the critical-layer   contribution 
to   nonlinear   wave   interactions    [see,   e.g.,  the   review   by   Maslowe 
(1986)    and   the   subsequent    related    paper    by   Goldstein    (1995)], 
Goldstein and Choi derived   an equation   for the  amplitude   A = A(x). 
This    equation     proved     to    be    integro-differential      and    cubically 
nonlinear     and    described     the    rapid    streamwise     growth     of   the 
amplitude   A. A similar  method   was   applied   by Wu et al. (1993)   to 
the   study    of  disturbance    development    in   a  near-wall    fluid   layer 
above   a horizontal   plate   oscillating   sinusoidally   in  the   x-direction; 
here   again   the   nonlinear   interaction   between    a pair   of symmetric 
oblique  waves  leads   to rapid   growth   of flow disturbances.   [Note that 
later  Wu  and   Stewart   (1995)   showed   that   rapid   growth   of three- 
dimensional    disturbances     in   a   plane    shear    layer    may    also   be 
produced    by   the   interaction   between    another   pair   of T-S   waves 
having   the   same   critical  layer   -  of one  two-dimensional    T-S wave 
and one oblique wave  having  the same  phase  velocity.  However  this 
instability mechanism will not be considered in this  chapter.] 

The development in a plane-channel (i.e. plane Poiseuille) flow 
of disturbances initiated by the appearance of a pair of oblique 
waves having amplitude A, frequency co and wave vectors ki = (fcls 

k2) and k2 = (&i, -ki) was apparently first studied by Lu and 
Henningson (1990) and Schmid and Henningson (1992a,b) who 
performed temporally-developing direct numerical simulations of 
this    development.      The     authors     considered     the     oblique-wave 
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development in a steady laminar flow as the first step en route to 
transition of. this flow to turbulence, an alternative to the N- and K- 
routes. To describe this new route the term oblique transition was 
used by these authors, while in the book by Schmid and Henningson J 

(200$) the name O-type transition was also used. As to the " 
boundary-layer flows, the development of a pair of oblique waves 
was first considered as a possible transition mechanism in the case of 
compressible flow; see, e.g., Thumm et al. (1989, 1990), Chang and 
Malik (1992, 1994), Fasel et al. (1993), and Sandham et al. (1994). 
[Special interest in the compressible case was stimulated by the fact 
that Squire's theorem of Sec. 2.81 is not valid here and, in contrast to 
incompressible boundary layers, the most-unstable wave in 
compressible shear layers is usually an oblique one; see, e.g., 
Reshotko (1976).] However, since in this book compressible flows are 
not considered,  these papers will not be discussed here. 

A spatially-developing numerical simulation of the oblique 
transition in the incompressible Blasius boundary layer was 
apparently first carried out by Joslin et al. (1993) who solved the 
exact Navier-Stokes equations together with the approximate 
'parabolic stability equations' (see Sec. 2.92, p. 117), and by Berlin et 
al. (1994) whose numerical simulation covered a greater number of 
flow-development stages than that of Joslin et al. The paper by 
Berlin et al. (1994) contains the first outline of Berlin's extensive 
numerical study of development of oblique waves in a boundary- 
layer flow, while the final results of this study were summarized in 
Berlin's doctoral thesis (1998) and in the paper by Berlin et al. 
(1999). The experimental part of the work, which was also included 
in the latter paper, was based on results from the doctoral 
dissertation of Wiegel (1996). One more recent doctoral dissertation 
devoted to experimental study of oblique transitions in plane 
Poiseuille and Blasius boundary-layer flows was presented by 
Elofsson (1998b); his results relating to boundary-layer instability 
are given also in Elofsson (1998a) and Elofsson and Alfredsson 
(2000). Then Schmid and Henningson (2000) presented results of 0_ 
somewhat different temporally-developing numerical simulations of 
the plane-Poiseuille and boundary-layer oblique transitions; these 
results will be also considered a little later. 

Numerical simulations of the 'oblique-transition regime' (or the 
'oblique-transition scenario' as this regime is often called) may be 
realized by solving the N-S equations for the disturbance velocity in 
a given laminar flow under the condition that at some x = xQ > 0 there 
is a 'disturbance generator' which generates a pair of symmetric 
oblique  waves   propagating   streamwise   in the  flow. This means   that 
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here    the    oblique    waves    are   included    in   the    'inflow   boundary 
condition'  stating that the 'inflow velocity'  at x = x0 is represented   b y 
the  Blasius  velocity   profile   plus  velocity   profiles   of two   symmetric 
oblique   waves.   In   the   case   of spatial   simulation   the   frequency    co, 
spanwise   wavenumbers    ±k2, amplitude   A    and  phase   <j)   of oblique 
waves   are  real   constants   which   may   be  chosen   by   the   researcher 
implementing     the    simulation.    If   the   plane-parallel     model    of   a 
boundary   layer   is used,   then   the   streamwise   wavenumber    k = kx 

may be determined   as the  complex  eigenvalue,   having   the  smallest 
imaginary  part,   of the  corresponding  Orr-Sommerfeld  equation  (2.41) 
with  given values  of co   and  k2 (and  c = co/kx). In the  more   general 
case   when   a locally  plane-parallel    approximation    is  used,   kx  is  a 
slowly-changing    complex   function    of x     which   is   given    by   the 
eigenvalue    with    the    smallest    imaginary    part    of   the    local   Orr- 
Sommerfeld   equation   (2.41)   (corresponding    to the   Blasius   velocity 
profile   U(z) = U(z,x)   at the   streamwise    coordinate   x). In   temporal 
simulations   the  wavenumbers    kx and  k2, amplitude   A  and   phase   <f> 
are real  and may  take arbitrary values;  while the frequency  co is the 
complex   eigenvalue   of the   corresponding    O-S equation,   with   given 
values    of  kx   and   k2,   that    has    the    greatest    imaginary    part.    In 
experimental  studies  of oblique  transition  the   'disturbance   generator' 
must   be   realized,   of course,   as   some   device   exciting   the   oblique 
waves with prescribed values of co, A   and k2. In the boundary-layer 
experiments  by Wiegel  (1996),    Elofsson (1998a,b),   and Elofsson and 
Alfredsson   (2000)   this   device   was   similar   to  the   'wave   generator' 
proposed by Gaponenko and Kachanov (1994) and then used by Bake 
et al  (1996    2000),   while  in channel-flow   experiments    by  Elofsson 
and Alfredsson   (1995,   1998)   [see also Elofsson (1998b)]   the  oblique 
waves   were   produced   by  a pair  of 'oblique  ribbons'   vibrating   with 
the  frequency   co    and amplitude A     and placed  at equal  and opposite 
angles   to   the   mean-flow    direction.   This   latter   method    of oblique 
wave   generation   was  also used   by   Elofsson  and   Lundbladh    (1994) 
who,   simultaneously  with   their  experiments,   carried   out a numerical 
simulation   of this transition   where   as  'disturbance   generator'   a pair 
of vibrating  oblique  ribbons  was  simulated. 

The early temporally-developing direct numerical simulations 
of the disturbance development in a plane-channel flow disturbed by 
a pair of small (but not infinitesimal) symmetric oblique waves 
performed by Schmid and Henningson (1992a,b) showed that strong 
nonlinear interaction between two waves arises almost at once, and 
produces a rapid growth of the disturbance energy and the 
appearance   of a number   of new  disturbance    structures,    essentially 
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accelerating transition to turbulence. Subsequent more complete 
spatial numerical simulations by Berlin et al. (1994, 1999) [see also 
Henningson et al. (1995)], and temporal numerical simulations by 
Schmid and Henningson (200(jf), of the analogous development of a 
Blasius boundary layer disturbed by a pair of oblique waves, 
revealed many important features of the process, and substantiate 
Schmid and Henningson's idea of the possible importance of the 
oblique-wave   mechanism   in   laminar-turbulent   transition. 

In papers by Berlin et al. it was again shown that a strong 
nonlinear interaction of a pair of symmetric oblique waves develops 
much more rapidly than in the case of a single 2D Tollmien- 
Schlichting wave initiating the nonlinear N- and K-routes to 
transition. This circumstance can be explained by the fact that both 
the N- and K-routes begin with the exponential growth of an 
unstable T-S wave according to the laws of the linear stability 
theory, and only when the amplitude of this T-S wave becomes large 
enough does the nonlinear resonant-triad interaction begin to play 
an essential part. However, the linear-theory prediction of the 
growth rate of a wave corresponding to eigenfunctions of the Orr- 
Sommerfeld equation is very small in comparison, not only with the 
growth of wave disturbances produced by their nonlinear 
interactions but even with the non-modal transient disturbance 
growth due to non-normality of the linearized Navier-Stokes 
equations [see in this respect Chap. 3 above where the meaning of 
the term 'non-normality' was explained on pp. 115-116, and also the 
expressive Fig. 5.30 taken from the paper by Reddy and Henningson 
(1993)]. Recall that in order to eliminate the stage of very slow 
growth of disturbances following linear-theory laws, Klebanoff et al. 
(1962) and many of their followers artificially excited three- 
dimensional disturbances in the vicinity of a spanwise vibrating 
ribbon. This was necessary since otherwise the test section of a low- 
turbulence wind tunnel would usually be too short for the most 
interesting  stages  of flow  development to be reached 

Berlin et al. (1994) carried out a spatial numerical simulation of 
a Blasius boundary-layer flow with a pair of oblique waves in it, and 
used the simulation results to study the appearance and subsequent 
growth in the flow of a number of new wave structures produced by 
nonlinear interactions between the primary oblique waves. The 
inflow conditions specified at x = x0 corresponded to a Blasius 
boundary layer with Re* = U03*/v = 400 (where U0 is the free-stream 
velocity and <5* is the displacement thickness at the inflow; recall 
that   at   such   a   low   Re*  unstable    T-S   waves    do   not   exist   in   a 
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boundary-layer flow) plus a pair of oblique waves  with frequency   co0 

- 0.08 (this and all other quantitative characteristics of the 
simulation discussed below are non-dimensionalized by the scales U0 

and <5*), spanwise wavenumber k2,o = 0.192 (the value of k\ was then 
determined from the O-S eigenvalue problem) and amplitude A = 
0.01. A more extensive and careful numerical simulation of the same 
type (where five different models of inflowing oblique waves were 
considered) was carried out by Berlin et al. (1999). Here somewhat 
different values of Re*, co0, k2,o and A, and of the investigated range 
of jc-values, were chosen to achieve a satisfactory match with the 
conditions of Wiegel's experiments, whose data were then compared 
with the numerical simulations. In Fig. 5.31a,b results from the two 
papers by  Berlin et al. are presented,   showing  the dependence   on (x 
- x0)/6* (in Fig. 5.31a) or on x in mm (in Fig. 5.31b) of the energies E 
of a number of (n,m)-Fourier components with frequencies and 
spanwise wavenumbers (co, k2) = (nco0,mk2tQ). (The numbers n and m 
may be always assumed to be nonnegative since the symmetry of 
the (co, k2) and (co, -k2) modes means that modes with negative 
values of k2 need not be considered explicitly.) In Fig. 5.31a the 
energies are divided by the inflow energy of the primary (1,1) mode, 
and hence here E(0) = 1 for (1,1) mode and = 0 for all other modes; in 
Fig. 5.31b energies E are measured in some conventional 
dimensional units,  and the coordinate x0  of the  'wave generator'   was 
here close to  186 mm. 

It is easy to see that the quantitative results of the 1994 and 
1999 simulations do not coincide; the differences are apparently due 
to the use of different numerical methods, models of inflowing 
waves, and outflow conditions (Fig. 5.31a clearly corresponds to 
conditions annihilating waves at the outflow end of the 
computational domain). Qualitatively however, the two collections of 
results are sufficiently close to each other. Both simulations show 
that the energy of the primary oblique waves does not change much 
with the streamwise coordinate x [in Fig. 5.31a it grows slightly at 
first and then remains almost constant, while in Fig. 5.31b it begins 
to decrease slowly immediately after the peak at the wave- 
generation point, but in both cases the energy changes for this mode 
are small in comparison with those for the other modes]. Fig. 5.31a 
shows the generation of a rather energetic (0,0) mode describing the 
distortion of the mean velocity profile by nonlinear waves, but this 
effect is not considered at all in Fig. 5.31b. However, according to 
both figures the most important feature of the oblique-wave 
interaction   is the rapid  growth  of the   (0,2)  mode,   greatly   exceeding 
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the growth of all other modes and quickly making this mode the 
most important disturbance structure. The (0,2) mode does not 
oscillate and has half the spanwise wavelength of the primary 
oblique waves oscillating with frequency COQ. Thorough analysis of the 
results of the numerical simulations by Berlin et al. (1999) and the 
flow visualizations performed by Wiegel (1996), Elofsson (1998a), 
and Elofsson and Alfredsson (2000) showed that in the case of 
oblique transition the (0,2) mode represents a periodic array of pairs 
of counter-rotating streamwise vortices with spanwise wavelength 
half that of the primary  oblique waves. 

Recall now that, according to results presented in Chap. 3, pp. 
92-93,8 arrays of streamwise vortices are just the structures which 
are subjected to the greatest transient growth produced by the so- 
called lift-up effect studied, in particular, by Landahl (1975, 1980, 
1990) and discussed in Sees. 3.22, 3.32 and 3.33. Therefore, after the 
generation of the (0,2) mode by the direct nonlinear interaction 
between primary modes (1,1) and (1,-1) its subsequent growth is 
due to two different factors: the quadratically-nonlinear interactions 
among existing oblique waves and the linear lift-up effect. The 
combined action of two growth mechanisms explains naturally the 
excess of the growth rate of the (0,2) mode over those of the (2,0) 
and (2.2) modes, which are also produced by direct nonlinear 
interactions of primary waves. As indicated by Landahl, the lift-up 
effect leads to the transformation of the streamwise vortices into a 
spanwise-periodic collection of horizontal streaks of fluid with 
alternating low and high streamwise velocity. Such streaky 
structures are in fact clearly seen in flow-visualization photos of 
boundary-layer flows by Wiegel, Elofsson, and Elofsson and 
Alfredsson, and on contour plots of disturbance velocities and 
vorticities determined from the data given either by the appropriate 
numerical simulations or by detailed hot-wire-anemometer 
measurements [see, e.g., Berlin et al. (1994, 1999), Berlin (1998), 
Elofsson (1998a,b),  and Elofsson and Alfredsson (2000)]. 

In a range of x-values where distinct horizontal streaks are 
seen, the streak amplitude As at a fixed value of x depends on the 
amplitude A of the primary oblique waves and, for not-too-large 
values of A, it is proportional to A    as it must be in the case of streak 

8 Note that the results  of Butler and Farrell  (1992)  presented in  Chap.   3  were 
obtained   for   a   simplified,   strictly   plane-parallel   model   of  the   Blasius   boundary 
layer.   The   optimally-growing   disturbance   structures   for      the   more   accurate 
model   of     a   streamwise-thickening   boundary   layer   were     studied   by   Andersson 
et al.  (1999)  and Luchini  (2000)  but will not be considered here. 
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generation by quadratic interaction of two oblique waves. With 
increasing x,, the amplitude As grows approximately linearly at first 
and then saturates but, if the primary forcing amplitude A is too 
low, then after the initial growth As begins to decrease and the 
streaks gradually disappear [these facts were first discovered by 
Joslin et al. (1993) and then confirmed in other papers mentioned 
above]. According to results of both the numerical simulations and 
the experiments, if A is not too low then streaks of saturated large 
amplitude As become unstable with respect to high-frequency 
oscillations, and this instability leads at first to oscillations of streaks 
and then to their breakdown and transformation into collections of 
irregular small-scale vortices forming the turbulent flow regime. 
Such a scenario of transition to turbulence was studied for both 
plane-channel and boundary-layer flows, in particular, by 
Henningson et al. (1995), Schmid et al. (1996), Alfredsson and 
Matsubara (1996), Reddy et al. (1998), Berlin et al. (1999), Brandt et 
al. (2000), and Elofsson and Alfredsson (2000); see also Schmid and 
Henningson's book (200c/). Most of these studies were based on the X- 
analysis of the appropriate numerical-simulation data (which was / 
supplemented by Brandt et al. also by some stability-theory 
computations), but Alfredsson and Matsubara, and Elofsson and 
Alfredsson performed in laboratory flat-plate boundary layers direct 
experimental studies of the streak-breakdown process. However, in 
this chapter the transition to turbulence is not discussed; therefore 
here only a few remarks about the streak-breakdown transition 
scenario  will be made. 

Let us begin with a short consideration of results given by 
numerical simulations of the oblique transition in a boundary-layer 
flow carried out by Henningson, Schmid and their coworkers and 
described in the papers by Henningson et al. (1995) and Shmid et al. 
(1996), and the book by Schmid and Henningson (200$). (These <2 
papers and the book contain also results of similar simulation of. the 
oblique transition in a plane Poiseuille flow which will be briefly 
discussed in the next chapter.) As was indicated earlier in this 
section, Schmid and Henningson performed temporal, not spatial, 
numerical simulations which differed in some respects from the 
spatial simulations by Berlin et al. (1994, 1999). In their temporal 
simulations the authors used the same model of a strictly plane- 
parallel Blasius boundary layer, with thickness 8{t) growing with 
time, which was used by Spalart and Yang (1987) and was briefly 
described in footnote 4 on p. 64. As to the above-mentioned 
difference from the approach by Berlin et al, it is connected  with the 
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inclusion of weak random background disturbances (supplementing a 
pair of oblique waves of much greater amplitude) in the numerical 
model of disturbed boundary-layer flow used by Schmid and 
Henningson. To model an oblique boundary-layer transition these 
authors disturbed the Blasius boundary layer not only by a pair of 
primary symmetric oblique waves of finite amplitude with wave 
vectors (ki,±k2) but also by random 'noise waves' of much smaller 
amplitudes having the following 'neighboring multiple wave vectors' 
(0,0) (random 'mean-velocity correction'), (fci.O), (2ku0), (0,±k2), (2ku 

±k2), (0, ±2k2), (ki,±2k2), and (2ku±2k2). Hence, contrary to the 
previous numerical models where all 'higher modes' were produced 
entirely by nonlinear interactions of the two primary oblique waves 
among themselves and with their higher harmonics, here weak 
random higher modes were assumed to exist right from the start, 
and could grow by extracting energy from the much more energetic 
primary waves. In Fig. 5.32 an example, computed by Schmid and 
Henningson, of dependencies on the time t of the energies E of the 
primary mode (1,1) and of three selected 'higher modes' is shown. 
(Here t and E are measured in some conventional units, and the 
numbers in parentheses indicate the ratios (K\/k\, K2/k2) of the 
streamwise and spanwise wavenumbers of the mode to those of 
primary waves.) The modes represented in Fig. 5.32 are not the same 
as in Figs. 5.31a,b (where moreover spatial, and not temporal, wave 
amplification was simulated), but nevertheless the qualitative results 
of the initial part of Fig. 5.32 (say, until t = 500) are reminiscent of 
those given in Figs. 5.31a,b. However, at larger values of t the 
horizontal-streak array [generated by streamwise vortices which are 
also (0,2)-mode structures] becomes unstable with respect to local 
high-frequency fluctuations, begins to oscillate in disorderly fashion, 
and then breaks down. As a result, the flow becomes turbulent, 
containing a large collection of various finite-amplitude structures. 
[This process is partially reflected in the right part of Fig. 5.32; cf. 
also Waleffe (1995) and Hamilton et al. (1995) where the streak 
breakdown and the following stages of disturbance development 
were also considered, and it was shown that, at Re > Recr, streak 
breakdown leads to regeneration of roll structures and may be a part 
of a self-sustaining process forming a steady near-wall turbulent 
regime]. Numerical results presented in Figs. 5.31a,b and 5.32 may 
be supplemented also by figures in the paper by Elofsson and 
Alfredsson (2000) showing the dependence on x of the amplitudes 
of various   (n,m)-modes   in the  Blasius  boundary-layer    flow   studied 
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experimentally   by these   authors.   However,   space limitations   give us 
no possibility to linger here on these experimental results. 

Note that the N- and K-regimes of disturbance development in 
a boundary layer both begin with the growth of a primary linearly- 
unstable two-dimensional Tollmien-Schlichting wave. Then this wave 
stimulates the appearance in the flow of some three-dimensional T-S 
waves (not the same for the two regimes) forming, together with the 
primary wave, an unstable wave system (this instability is clearly 
the secondary one). Thus, both regimes may be interpreted as initial 
stages of the TS-wave-secondary-instability transition scenario; as 
explained earlier, whether the N-regime or the K-regime will be 
realized depends only on the primary-wave amplitude. Quite another 
route to boundary-layer transition is represented by the oblique- 
transition scenario (or 'O-regime') considered above, where the first 
stage consists of the development in the flow of a pair of symmetric 
oblique T-S waves. In parallel with these two scenarios Schmid et al. 
(1996), Reddy et al. (1998) and Schmid and Henningson (200^) <L 
considered also a third streak-breakdown transition scenario which 
does not include the stage of growing T-S waves [i.e., represents 
some particular type of the by-pass transitions considered by 
Morkovin (1969); cf. Chap. 2, p. 118]. This third scenario has many 
features in common with the oblique-transition scenario but it 
completely disregards the first stage of the latter regime, connected 
with TS-wave development, and begins with a collection of 
streamwise vortices which is a (0,2)-mode structure, while in the 
oblique transitions (0,2)-structures are produced by nonlinear 
development of a pair  of symmetreic  oblique  waves. 

At the very beginning of this section it was noted that if one 
assumes that any T-S wave may penetrate the boundary-layer from 
the disturbed free-stream flow, then it seems natural to suppose that 
the most unstable of such waves must dominate the initial stage of 
the development of flow instability. However, if the free-stream flow 
is so disturbed that all possible T-S waves are present there and can 
penetrate the near-wall flow region, then similar penetration must 
be possible also for many non-modal disturbances (i.e. those 
differing from T-S waves) existing in the boundary-layer 
environment. It seems equally natural to assume that the initial 
stage of boundary-layer instability development will be dominated, 
not by the most-unstable T-S wave but by the optimally-growing 
disturbance of non-modal type which, during the initial stage of 
disturbance development, grows much faster than any T-S wave 
(again see Fig. 5.30). As explained in Chap. 3, if the transient, rather 
than   the   asymptotic    (relating   to   t  -» °°)     disturbance    growth,    is 
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considered and the disturbances are assumed to be so small that 
their development may be described by linear instability theory, 
then the optimally-growing disturbance will be non-modal, and in 
the case of a boundary-layer flow will have the form of a spanwise- 
periodic array of streamwise vortices. Therefore, it seems reasonable 
to suppose that a disturbance development starting with the 
appearance in the boundary layer of streamwise vortices of small 
amplitude may also be a quite important mechanism of real 
boundary-layer transition to turbulence. Exactly this mechanism was 
called the 'streak-breakdown transition scenario' in the papers 
mentioned  in   the  previous   paragraph. 

Is it possible to estimate quantitatively, if only roughly, the relative 
likelihood of various transition regimes for different flows met in practice? It 
is clear that for this it is necessary, first of all, to estimate somehow the 
probabilities of the appearance of disturbances of various types, with various 
amplitudes, frequencies and wave vectors. However, such an estimate is 
impossible without detailed knowledge of the qualitative and quantitative 
characteristics of free-stream turbulence and other environmental xnoise' 
while in practice these characteristics can seldom be determined with 
satisfactory accuracy. Thus, the problem of likelihood estimation cannot have 
a general solution and may be solved, even partially, only in some exceptional 
cases. Hence it is only natural that Schmid et al.  (1996), Reddy  et al. (1998),  and , 
Schmid   and Henningson  (200$)   did   not try   to study   the  problem   in its general        J. 
form   but   considered    only    two   more    special    subproblems,     having     definite / 
relevance    to  a rough    assessment    of  the    likelihoods    of  different     routes    to 
transition. 

It has already been indicated earlier in this section that a pair of 
symmetric oblique waves may lead to v oblique transition' of the boundary- 
layer flow only if the initial amplitude A of these waves is not too small. 
Otherwise the waves will at best only begin to grow and later they (and also 
the streamwise vortices, if they were generated by primary waves) will begin 
to decay and finally disappear. This means that there exists some threshold 
amplitude Au of the oblique waves, oblique transition being possible only if A > 
Au. [Of course, the threshold amplitude may take different values for oblique 
waves with different values of (kuk2) or (co,k2); below, the symbol Au will 
always be applied to 'optimal waves' corresponding to the greatest threshold 
amplitude.] Recall now that in Sec. 5.2 it was indicated that a threshold 
amplitude exists also in the case of resonant-triad interactions: at too small an 
amplitude of the primary plane T-S wave, resonant growth of the oblique wave 
becomes impossible. In Sec. 5.2 only the stage of resonant growth of oblique 
waves was considered; it is clear, however, that for the full realization of the 
TS-wave-secondary-instability transition scenario the initial amplitude A of 
the linearly unstable plane T-S wave must exceed a definite threshold value Au, 
which is apparently greater than the threshold value determining the 
possibility of a transient growth of oblique-wave amplitude. Finally, a definite 
threshold value Alr of the initial amplitude of the streamwise vortices must also 
exist, and determine whether or not an array of such vortices can be 
transformed into a periodic array of streamwise streaks and then disintegrate 
into   a collection   of disordered   ('turbulent')    vortical   structures.    Hence,   for   all 
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transition scenarios considered above, there exists an initial threshold 
amplitude Au determining whether the corresponding initial (oblique) 
disturbances may or may not lead to transition. The value of Atr does not 
determine the likelihood of this transition scenario but it is clear that a 
decrease in this value increases the chances that the scenario will be realized 
in practice. Therefore the evaluations of amplitudes Atr may be quite useful 
for  the   assessment   of  the   likelihood   of  various   transition   regimes. 

Another problem, also having relation to attempts to determine which 
of the scenarios is the most likely, is the problem of estimation of the 
'transition time' TQ (or streamwise distance) which is necessary for 
completion of the transition to turbulence (if it may be achieved) by the route 
considered. The point is that if the time T0 is large, then there is a real chance 
that during this time some extraneous disturbances will begin to interfere 
with the normal flow development and will disrupt the transition process. 
Hence,   an  increase  in   T0 diminishes   the   likelihood   of   the   scenario. 

For the case of a Blasius boundary-layer flow, an approximate estimate 
of the values of Atr and T0 corresponding to the three transition scenarios 
listed above was made by Schmid et al. (1996) [see also Schmid and 
Henningson's book (200^)]. This estimate was based on the results of the \ 
temporal numerical simulations of the three transition scenarios described / 
above, performed by the authors. All the simulations were of the same type as 
the simulation of the oblique transition which was briefly described earlier in 
this section, and led to the results shown in Fig. 5.32. (Thus, in these 
simulations the boundary layer was also assumed to be plane parallel with 
thickness 5(0 growing with time, and the initial disturbances included 
'random noise' whose energy was about 1% of the energy of primary 
disturbance.) The primary disturbances - a plane T-S wave, or a pair of 
symmetric oblique waves, or a spanwise periodic array of streamwise vortices 
- were always chosen to be close to the optimal ones (which grow with time 
most rapidly), but the initial amplitudes A of these disturbances were varied, 
and, in all cases in which transition to turbulence was found to be possible, 
the simulations were continued up to transition. These computations yielded, 
for the three scenarios, the dependence of T0 on the value of the initial 
amplitude A, and thence the value of Au, being the greatest value of A at 
which the transition could not be reached (i.e. it corresponded to Ta = «). Fig. 
5.33 shows results obtained by Schmid et al. for the Blasius boundary layer 
with the initial Reynolds number Re* =500. Here the initial amplitude A is 
replaced        by       the       initial        energy        of      the       primary disturbance 

E = [{u2 + v2 + w2)dx,   where      W   is    the    periodic     box    domain     of    the 
^y w 

computations, Vis its volume, and E and the other dimensional quantities are 
non-dimensionalized using 8* and U0 as length and velocity scales. It is seen 
that the threshold energy Ea takes its lowest value for the oblique transition, 
and the highest for the streak-breakdown regime which begins with the 
appearance of an array of streamwise vortices. The TS-wave-secondary- 
instability regime (which may be either of N- or of K-type) takes a n 
intermediate place, but at high values of the initial energy E it develops more 
slowly (leading to a greater value "of T0) than the streak-breakdown regime 
and   this   increases   the   competitiveness   of   the   latter   regime. 

5.62. Linear    and Nonlinear    Development of   Localized    Disturbances 
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The three transition scenarios considered above all begin with 
the appearance of some spatially-unbounded disturbance in a 
laminar Blasius boundary layer. However, it was noted in Chap. 3, p. 
99, that real disturbances appearing in various natural, engineering 
and laboratory flows are as a rule initially localized in some finite 
fluid volumes. In this respect several papers were cited in Chap. 3 
which were devoted to studies of the temporal evolution of localized 
disturbances in wall-bounded shear flows. Most of these papers dealt 
with inviscid flows, which are not considered in this chapter [an 
important exception is the paper by Henningson et al. (1993), some 
results of which will be discussed below]. Moreover, in Chap. 3 only 
results relating to initial disturbances of very small amplitudes, 
whose evolution may be described by linearized Navier-Stokes 
equations, were studied. On the other hand, Gaster and Grant (1975) 
and Breuer and Haritonidis (1990) (these papers were considered in 
Chap. 3), who tried to describe the results of their wind-tunnel 
observations of the evolution of localized disturbances in a 
boundary-layer flow in the framework of linear stability theory, 
both found that the deductions from this theory agree with 
observations only during some initial time interval and become 
invalid at later times. Hence it is clear that the linear theory is 
insufficient for a satisfactory description of the development of 
localized   disturbances. 

As well as the above-mentioned work by Gaster and Grant, and 
by Breuer and Haritonidis, other attempts to study evolution of 
artificially produced localized disturbances in laboratory flat-plate 
boundary layers have been made; the papers by Gaster (1984, 1990), 
Tso et al. (1990), Cohen et al. (1991) and Breuer at al. (1997) are just 
typical examples of such work. Gaster, and Tso et al. paid their main 
attention to a late stage of the disturbance evolution directly 
connected with formation of turbulent spots and transition to 
turbulence; since this chapter is devoted mainly to the weakly- 
nonlinear effects, their papers will be mentioned only occasionally 
below. Results of the other two papers mentioned will be described 
below at greater length; first, however, data of quite a different 
origin will be considered. 

The purely theoretical results available at present cannot 
satisfactorily describe the weakly-nonlinear stage of localized- 
disturbance development, but results of numerical simulations are 
more informative. Apparently one of the first attempts to apply 
nonlinear numerical simulation (i.e., the numerical solution of the 
appropriate    initial-value    problem    for   the   nonlinear    Navier-Stokes 
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equations) to the study of the evolution of a localized disturbance in 
a boundary-Layer flow was made by Breuer (1988). His numerical- 
simulation results were then carefully analyzed by Breuer and 
Landahl (1990). The numerical solution of the nonlinear initial-value 
problem considered in Breuer's dissertation (1988) and his paper 
with Landahl related to the evolution in the Blasius flow [assumed to 
be plane-parallel but with thickness S(t) growing with time] of a 
localized disturbance initially having the form shown schematically 
in Chap. 3, Fig. 3.2; see also Eqs. (5.19), (5.19a) and Fig. 5.38a below, 
also relating to this initial disturbance. [As noted in Chap. 3, the same 
model of the initial disturbance was also used in stability 
computations by Russell and Landahl (1984), Henningson (1988), 
Breuer and Haritonidis (1990) and Henningson et al. (1993); later it 
was also accepted as one of the three initial conditions considered by 
Bech et al. (1998).] Breuer and Landahl's paper represented a 
continuation of the work of Breuer and Haritonidis (1990), where the 
same initial-value problem was solved for the inviscid linearized N-S 
equations; some of the results obtained there were shown in Fig. 3.3. 
These results agreed satisfactorily with Breuer and Haritonidis' 
wind-tunnel experimental data (relating to a flat-plate boundary 
layer where localized disturbances of a shape close to that shown in 
Fig. 3.2 were artificially produced) but only for small and moderate 
values of dimensionless time T=tU(/ö*. However, for larger values 
of T the numerical results of Breuer and Landahl's nonlinear 
computations agreed better with the available experimental data 
than those of Breuer and Haritonidis' solution of linearized N-S 
equations. 

Breuer and Landahl (1990) [and also Landahl, Breuer and 
Haritonidis (1987)] stressed that both Breuer's computational results 
and the experimental data of Breuer and Haritonidis showed that the 
disturbance evolving from a strongly-localized initial disturbance in 
a boundary layer consists of two very different parts. Recall that in 
Chap. 3 (pp. 24-27) it was pointed out that in the case of small 
disturbances in a plane-parallel steady inviscid flow, the general 
solution of the corresponding linear initial value problem includes 
terms of two different types. [In Chap. 3 this result was attributed to 
Gustavsson (1978) but in fact it was already mentioned by Case 
(1960) for the case of two-dimensional disturbances.] The first type 
is formed by the so-called 'convective components' (the adjective 
'convective' is sometimes replaced here by 'transient'); these 
components are convected streamwise with the local flow velocity 
U(z) and they  often undergo   considerable   transient   growth   followed 
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by a rapid decline. (In connection with the phenomenon of 'transient 
growth', much attention was paid in Chap. 3 to these components.) 
The disturbance components of the second type are 'dispersive 
waves', i.e., waves with phase velocities depending on their 
frequencies and wave numbers. In Chap. 3 it was stressed that in the 
case of an 'ideal' (inviscid) fluid the phase velocities c of the wave 
component do not coincide with the discrete eigenvalues of 
Rayleigh's eigenvalue problem. However, in the case of fluids with 
non-zero viscosity the phase velocities of the 'dispersive waves' are 
just the eigenvalues of the Orr-Sommerfeld eigenvalue problem and 
the 'dispersive component' of any evolving disturbance is 
represented by some collection of T-S  waves. 

Discussion of the 'convective' (i.e. 'transient') and 'dispersive' 
flow disturbances in Chap. 3 related only to inviscid fluids and to 
very small (regarded as 'infinitesimal') disturbances. However, the 
closing sentence of the last paragraph implies that the same notions 
may also be applied to disturbances in viscous flows. (Recall that 
small transiently-growing disturbances in viscous fluid flows were in 
fact considered at length in Sec. 3.3 of Chap. 3.) Also, the results of 
the above-mentioned papers by Breuer, Landahl, and Haritonidis 
(and the experimental results of Tso et al.) confirmed that the 
division of the set of all disturbances in steady plane-parallel (or 
nearly plane-parallel) flows into 'convective' and 'dispersive' parts is 
fully appropriate in the case of finite-amplitude disturbances in 
viscous flows, where the two types can often be easily distinguished. 
These results also showed that convective disturbances are really 
transient ones - they grow considerably during a short initial time 
(or streamwise) intervals but then begin to decay rapidly and as a 
rule entirely disappear shortly afterwards. Therefore, in studying the 
long-time evolution of localized disturbances leading to transition to 
turbulence, it is reasonable to pay the main attention to dispersive 
wave   disturbances. 

One of the results found by Breuer and Landahl is shown in Fig. 
5.34; it is similar in many respects (although not identical) to that 
presented in Fig. 3.3b. Note, in particular, that both figures show the 
appearance of a strong tilted shear-layer between low-speed and 
high-speed regions produced by the lift-up effect; this result was 
confirmed later by the results of numerical simulations, both linear 
and nonlinear, of the development of a localized disturbance in plane 
Poiseuille and boundary-layer flows by Henningson et al. (1993) [one 
of the linear results of these authors was shown in Fig. 3.17]. Note 
that the linear and nonlinear instability of the boundary layer to 
two-dimensional   waves   (k2 = 0)  with   high   values   of ku found   by 
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Breuer and Landahl, strongly contradicted the results of Henningson 
et al. but, .as the latter authors showed, this was due to the 
insufficient resolution of Breuer and Landahl's computations in the 
wall-normal direction. However, many other results of these two 
groups of authors agree quite well with each other (and were 
confirmed also by the results of careful experiments by Cohen, 
Breuer and Haritonidis (1991) and Breuer, Cohen and Haritonidis 
(1997) which will be discussed later). 

So, Breuer and Landahl found that nonlinear effects strongly 
influence the temporal evolution of disturbance structures and the 
behavior of disturbances at large values of dimensionless time T. 

Two-dimensional spatial spectra of the normal-to-wall disturbance 
velocity w(x,y,z,t) at z/S* = 1.05, computed by them for a number of 
values of T, show that at T = 43 the spectrum contours have smooth 
oval shapes and there is a unique spectral peak at the common 
center of these ovals. This simple spectral shape is close to that 
corresponding to the initial conditions in Fig. 3.2. However at larger 
values of T the shape becomes much more complicated, and a 
number of new spectral peaks emerge at points (kjö*,k2ö*) 
corresponding to larger values of spanwise wavenumber k2. In 
particular, at x = 136 peaks were found at (kjS*,k2ö*) = (0,0.7), 
(0.1,1.3), (0.2,2.0) which recall the series of harmonics of increasing 
order produced by nonlinear interactions. Henningson et al. showed 
analytically that, after the appearance of the peaks of the energy 
distribution at wave vectors (±kx,±k2), the nonlinear interactions will 
give rise to new peaks at (±2&i,0) and (0,±2k2) (the latter will be the 
most rapidly growing), and also at (±ku±3k2), (0,±4k2), etc., 
corresponding to propagation of energy up the spanwise 
wavenumber axis. Moreover, both groups of investigators found that 
solutions of the nonlinear initial-value problem imply the generation, 
at later stages of the instability-development process, of a system of 
long spanwise-alternating streaks of high- and low-speed fluid (see 
for example Fig. 5.35 by Hennington et al.\ similar figures were also 
presented by Breuer and Landahl, and Bech et al). These streaks 
then form streamwise-elongated vortical structures, recalling the 
streamwise A-vortices observed in other regimes of boundary-layer 
transition, and still later produce turbulent spots which are the 
precursors of full transition to turbulence (these stages of instability 
development were more explicitly described by Cohen et al. and 
Breuer et al). Therefore, the results support Morkovin's idea of the 
ordinariness   of so-called   'by-pass  boundary-layer   transitions'   whose 
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late stages do not differ much from those for transitions initiated by 
primary T-S. waves. Moreover, they allow the localized-disturbance 
scenario of boundary-layer transition to be added to the other three 
transition   scenarios   considered   above. 

The nonlinear interactions play an important part in the 
temporal evolution in laminar shear flows of high- and moderate- 
amplitude wave packets consisting of a collection of two- and three- 
dimensional T-S waves. Let us recall that in Sec. 3.31 it was 
mentioned that such wave packets were used by a number of 
researchers as natural models of localized disturbances in a 
boundary layer. In particular, Gaster (1975) used a wave-packet 
model to describe quantitatively the results of Gaster and Grant's 
(1975) experiments on the development of a localized disturbance, 
produced by a short acoustic pulse, in the boundary layer on a flat 
plate. The streamwise evolution of such disturbances was 
investigated by a hot-wire anemometer measuring the values of the 
streamwise disturbance velocity u at points with z = 3.28* (i.e., 
placed slightly above the boundary layer) and various values of 
coordinates x and y. As stated in Sec. 3.31, Gaster modeled this 
evolution by representing the values of the streamwise-velocity 
disturbances     u(x,y,z,t) at positive values of x   in the form: 

u(x,y,z,t)= J Jw(*2,©;z)exp[ift(^,<ö)x + ^y-«}WM°> (5-17) 

[this equation appeared in Sec. 3.31 as Eq. (3.52)]. Here u(k2,co;z) is 
the Fourier transform, with respect to y and t, of the initial value of 
the streamwise velocity disturbance at x = 0 and a fixed value of z, 
and ki(k2,<D) is the complex eigenvalue with the smallest imaginary 
part appearing in the spatial 3D Orr-Sommerfeld eigenvalue problem 
(2.41), (2.42) (corresponding to given values of k2 and at). Gaster and 
Grant dealt with the supercritical (Re > Recr) boundary layer to which 
a small disturbance was introduced at x = 0. Hence there existed that 
plane wave which grows most rapidly with x, having frequency a = 
OJQ and the streamwise wavenumber kx = fci(0,fi)) given by the O-S 
eigenvalue with numerically-greatest negative imaginary part. 
Moreover, the waves with (fc2,Q>)-values close to (0,oo0) and k{ = 
k{{k2,co) are also spatially growing in this case and their rate of 
growth   is only   slightly   smaller   that   that   of the   most   unstable    2D 
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wave. There is also a larger region of the (k2,co)-p\?Lne which 
corresponds • to the collection of all spatially-growing waves. Gaster 
described the evolution of the localized disturbance by an 
approximate numerical value of the integral in Eq. (5.17) in which 
only spatially-growing waves were taken into account. Thus, the 
approximate solution of the initial-value problem he considered has 
the form of a superposition of spatially-growing two- and three- 
dimensional T-S waves each of which is the least stable of the waves 
with the same values of k2 and co, grows in accordance with the 
prerdictions of the linear stability theory and does not interact with 
any of the other waves. 

In Gaster and Grant's experiments the amplitude of a wave 
packet took rather low values and they found that in this case the 
theoretical model (5.17) led to results which agreed well with their 
observations at the majority of the measuring stations. However, 
they noted that the data obtained at the largest value of x disagreed 
with the predictions of Eq. (5.17). The authors explained this 
discrepancy by the influence of nonlinear effects at large x. This 
explanation is evidently confirmed by the results presented above, 
relating to transition scenarios starting with the growth of T-S waves. 
In fact, these results show that even when there is only one such 
wave whose amplitude exceeds a relatively small threshold value, it 
necessarily begins to interact at once with the background 
disturbances ("noise") that always exist in practice. Moreover, in the 
case of a group of growing T-S waves, their nonlinear interactions 
must necessarily become apparent after quite a short period of 
independent development. Therefore model (5.17) of wave-packet 
development can represent only an approximation applicable to 
packets   of small initial amplitude   during   some  limited   initial  period 
of time. 

Cohen, Breuer and Haritonidis (1991) and Breuer, Cohen and 
Haritinidis (1997) repeated the experiments by Gaster and Grant 
(1975) using a low-turbulence wind tunnel with a test section about 
6 m long. Cohen et al. made hot-wire measurements of the mean- 
velocity profile  U{z) (depending only on the local value  of <5*)9 and of 

9  In  both     papers   it  was   assumed  that  the  boundary   layer is  plane-parallel  but 
in the treatment of data relating to a given value of x,  values  of <5*   and   Re* 
corresponding  to   this  x    were used.  [A more precise analysis of some data of 
Cohen   et al.,   which   took  into   account  the   streamwise   growth  of  the  boundary 
layer,  was   developed by  Cohen  (1994).]     Measurements  by  Cohen et al.  and 
Breuer   et al.   showed  that  in  their  studies   the  pressure  gradient  in  the 
boundary   layer   was   slightly   negative,   and   therefore   the   function   U(z)   was 
slightly  closer to  a Falkner-Skan  profile for ß =  0.01  (see Chap. 2, p.119) than to 
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the three disturbance-velocity components u, v and w at a great 
number of points x = (x,y,z) inside the boundary layer, while Breuer 
et al. measured only the streamwise disturbance velocity u but with 
a rake of hot-wire probes to make simultaneous measurements of u 
at eight values of z. The long wind-tunnel test section made possible 
the observation of boundary-layer development over a large range 
of x. Moreover, the disturbance generator (which produced short 
sinusoidal air pulses of acoustic origin) allowed the amplitude A of 
the initial localized disturbance to be varied easily. The Reynolds 
number Re* = U0S*/v at the location of this generator was close to 
1000  (well  above the critical value)  in these experiments. 

Cohen et al. and, later, Breuer at al. found that at small enough 
values of A three different stages of streamwise development of 
wave packets may be observed. The first stage (called the linear 
stage by these authors) corresponded very well to Gaster and 
Grant's observations; here Gaster's Eq. (5.17) (based on the linear 
stability theory) described the disturbance evolution with high 
accuracy. Spectral analysis of the velocity fluctuations showed that 
during this stage the disturbance included both two- and three- 
dimensional T-S waves corresponding to ranges of dimensionless 
frequencies co = 27tfö*/U0 (where / is the dimensional frequency 
measured in Hz) and spanwise wavenumbers K2 = k25* centered 
around the values co = co0 and K2 = 0 corresponding to the most 
rapidly growing T-S wave (which is two-dimensional, i.e. with £2 = 0, 
by virtue of Squire's theorem - see Chap. 2, p. 75). [Symbols co, K2 and 
K\ (= k]8*) will now denote dimensionless frequencies and 
wavenumbers.] One example of the (^2,ct))-spectrum found in the 
linear stage of localized-disturbance development is shown in Fig. 
5.36a. In full accordance with Gaster's model (5.17), during the linear 
stage the values of Kx = Ki(K2,co) could be determined for all waves 
considered by means of the O-S equation, as those corresponding to 
the most-unstable wave with given values of co and K2. It was also 
found that as the wave packet moved downstream all wave 
components evolved according to the O-S equations (and hence 
independently from each other). Therefore, in the linear stage of 
disturbance development the most rapidly growing T-S wave, and a 
group of T-S waves with frequency and wave number close to the 
most rapidly growing wave [and hence with values of K2 and  co  close 

the  Blasius  profile  corresponding  to  ß  =  0.   However,  the  Blasius   approximation 
was  found to  be  accurate enough to be usable in the  analysis  of the 
experimental    data. 
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to K2 = 0 and co = co0 corresponding to the most unstable T-S wave], 
gained energy most effectively. As a result, a relatively narrow band 
of two- and three-dimensional T-S waves centered at the most- 
amplified wave quickly began to play the dominant role in the 
evolution of the wave packet. In the initial series of experiments by 
Cohen et al. the first (linear) stage was observed from x = 160 cm to 
x = 220 cm (the disturbance generator being placed at*=*0 = 81cm 
from the plate leading edge). The amplitude A of the wave packet 
was close to 0.3% of UQ at x = 160 cm and grew to 0.46% of U0 at x = 
220 cm (i.e., during the linear stage it continued to be quite small). 

At x = 220   cm the   second   stage  of wave-packet   development 
began. Here, in addition to the spectral  peak  at (0,coQ)   two additional 
spectral   peaks   of the  two-dimensional   (K2,ö))-spectrum   appeared    at 
the   points   (K2A,cox) and   (-K2,i,coi) which   corresponded    to  a  definite 
pair   of   symmetric    oblique    waves    (see   Fig.   5.36b).    Cohen   et   al. 
discovered  that  the  peak frequency   cox was equal to co0/2, i.e. half the 
frequency    of the   most-amplified    2D wave.    [This   fact   agrees   with 
Gaster's  (1990)   discovery   of spectral   peaks   at frequencies   coll  and 
3(o/2 (the latter was clearly due to secondary   nonlinear   interactions) 
in the wave packet produced in the boundary layer on a flat plate  by 
a sinusoidal   acoustic   signal   of frequency    co.] Cohen et al. also found 
that    to   the   peak    frequency     cox   and    spanwise    wavenumber     K2tY 

corresponded       to     the      T-S     wave      with      complex      streamwise 
wavenumber  Kx= Kx{K2tl,coi) having the real part 5Ke^i(Z2,i,o>i) close to 
half the real part 3ieKi(0,co0) of the complex streamwise   wavenumber 
Ki(Q,co0) of the most  unstable   2D wave.   Hence  the  two  new   spectral 
peaks    appearing    in   the   second   stage   of the   localized-disturbance 
development   together   with  the  already   existing  spectral   peak  at the 
point   (0,ffl0) corresponded   to a Craik's resonant   triad   of T-S waves. 
And to the  spectral   regions  surrounding   two peaks   at points  (K2,i,(oi) 
and     (-K2A,coi)    there     corresponded      two     symmetric      bands      of 
subharmonic   oblique  waves   with frequencies   close to co0/2, recalling 
the   band   of subharmonic    oblique   waves   appearing    during   the   N- 
regime   of instability   development   initiated   by the primary   unstable 
plane  T-S wave  (this band  is clearly  seen in Figs. 5.5a,b). During the 
second    stage    of   wave-packet     development     the    two    bands     of 
subharmonic  oblique  waves  gain  energy   very  effectively,   so that  the 
oblique  waves  experienced  rapid   growth,   exceeding  considerably   the 
growth   of waves   corresponding   to the primary   peak  centered   at the 
point   (0,o)0).  Cohen   et  al. suggested    that   this   gain   was   due   to   a 
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number of three-wave resonances. They also found that the primary 
band of waves, with frequencies close to co0 and small values of \K2\, 
began to lose its energy somewhere in the initial part of the second 
stage (where the growth of its waves turns into decay) and 
disappeared entirely in the third stage (see Figs. 5.36c,d). Cohen et al. 
and Breuer et al. called the second stage of the wave-packet 
development the subharmonic stage. In the first series of 
experiments considered above, made in 1991, this stage was 
observed between x = 220 cm and x = 300 cm and within this range 
the amplitude A of the wave packet increased from 0.46% of U0 to 
5.2% of U0 (this growth evidently considerably exceeds that observed 
within the first stage). Cohen (1994) tried to apply to description of 
this stage of disturbance development the weakly-nonlinear stability 
theory, which used the amplitude-power expansions where only a 
few terms of lowest orders are taken into account. [The attempt b y 
Zel'man and Smorodsky (1990) to describe a wave-packet evolution 
by a system of amplitude equations of the lowest nontrivial order 
also relates to just this stage.] 

The third and final stage of wave-packet development is 
strongly nonlinear. Here a number of new spectral peaks, 
representing sums and differences of spectral characteristics of 
primary and secondary waves and due to the nonlinear interactions 
of these waves, appear in the disturbance spectra. In particular, the 
(0,0)-mode corresponding to velocity-profile distortion also emerges 
from such interactions, and may lead to the appearance of local 
profile inflections producing quasi-inviscid flow instabilities and 
high-frequency small-amplitude velocity oscillations. These 
oscillations have random phases and may later contribute to the 
formation of turbulent spots, indicating the imminence of transition 
to turbulence [see, however, the closing part of Sec. 5.5 where the 
appearance of turbulent spots is connected with the evolution of 
Klebanoff's spikes, which have an origin other than inflection- 
generated oscillations]. In the series of experiments by Cohen et al. 
considered above, the third stage was observed between x = 320 cm. 
and x = 350 cm and was accompanied by rapid growth of disturbance 
energy leading at x = 350 cm to a very high value of amplitude A, 
close to 27% of U0. To study the second and third stages of the wave- 
packet development, Cohen et al. performed a number of 
experiments with larger initial values of A to shift the second and 
third stages of wave-packet development upstream and thus make 
observations easier. A more detailed experimental study of the late 
stage  of wave-packet   development   was carried   out by Breuer   et al. 
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(1997) while Cohen (1994) published some theoretical considerations 
relating to .the initial stage of wave-packet development, and 
compared his theoretical results with the experimental data of Cohen 
et al.  (1991). 

The theoretical results by Cohen (1994) were based on an 
improved linear model of the evolution of waves in a laminar 
boundary-layer flow. This model took into account the 
nonparallelism of the flow (leading to weak dependence of 6* on x) 
by an approximate method developed by Saric and Nayfeh (1975) 
and Nayfeh and Padhye (1979). Cohen extended Gaster's (1975) 
model to the case of a slightly nonparallel boundary layer and then 
calculated anew the time evolution of amplitudes for a large number 
of two- and three-dimensional T-S components of the wave packet 
studied by Cohen et al. (1991). Data obtained in the latter work for 
the evolution of amplitudes of individual waves were then compared 
with the evolution predicted by the extended linear stability theory. 
Cohen found that the results of the linear stability theory relating to 
the most rapidly growing two-dimensional T-S wave of frequency a>o, 
or to any T-S waves with values of (K2,Q)) close to (0,6)0) and high 
rates of the 'linear' spatial growth, agreed very well with the 
experimental data within the whole first stage of wave-packet 
development and a considerable part of the second stage. However, 
the subharmonic oblique modes with frequencies close to coQ/2 begin 
to grow much faster than predicted by linear stability theory, before 
the end of the first stage of wave-packet development (this was not 
observed in experiments since at corresponding values of x the 
subharmonic modes were still rather weak). Thus Cohen (1994) 
concluded that in the case of wave propagation in a laminar 
boundary layer, nonlinear effects often become significant at 
appreciably smaller values of x (measured from the leading edge of 
the plate) than was assumed earlier, and these effects make the 
linear stability theory inapplicable to subharmonic wave modes for 
all but rather small values of x. 

Measurements carried out by Breuer et al. (1997) dealt only 
with streamwise velocities U{z) and u(x,y,z,t) but they were made in 
a very dense grid of spatial points and times, and provided the 
authors with a vast amount of numerical data. (In particular, a great 
number of repeated observations yielded large ensembles of data, 
guaranteeing the accuracy of statistical characteristics.) The results 
found by Breuer et al. supported, and made more precise, the 
conclusions of the paper by Cohen et al. As an example of the new 
results,   Fig. 5.36  shows   the  constant-velocity   contours   in the   (T,y)- 
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plane and the corresponding two-dimensional (X2,0))-spectra for 
velocities u(x,y,z,t) at z/<5* =0.5 and for four values of x relating to 
the first, second, and third (two x-values) stages of wave-packet 
development.10 Here T= (t-T0)Uo/(x-x0) is non-dimensionalized time, t 
is dimensional time of the measurement (counted from the moment 
of air-pulse ejection by disturbance generator), x is the x-coordinate 
of the measurements counted from the leading edge of the plate, x0 = 
81 cm is the ^-coordinate of the disturbance generator, while T0 is 
the delay time, proportional to (x-x0)/U0 with a proportionality 
coefficient chosen to make the origin of the time T close enough to the 
time when the leading edge of the wave packet reaches the 
measurement   coordinate   x. 

The two upper diagrams in Fig. 5.36, labeled as Fig. 5.36a, are 
for x = 170 cm, within the first (linear) stage of disturbance 
development (the wave-packet amplitude A was here close to 0.6% 
of U0). At this value of x the u-velocity contours had the form of 
smooth swept-back crescents, which was also the form of the wave- 
packet observed by Gaster and Grant at points far from the 
disturbance generator (closer to the generator, Gaster and Grant's 
wave packet had an oval shape). The (K2,co)-spectmm shows that, at 
this x, most of the wave-packet energy is concentrated in the band of 
2D modes (and 'almost 2D' modes with \K2\ «1), centered at the mode 
with (K2,co) = (0,0.09) which is just the most-unstable T-S wave at the 
Re* corresponding to x = 170 cm. There are also two much smaller 
spectral peaks at points (K2,co) « (±0.25, 0.085), which apparently 
represent weak 'oblique-wave contributions' to the disturbance 
energy at ^-values corresponding to the first stage of wave-packet 
development  as  noted by  Cohen et al.  (1991) 

At x = 250 cm, in the second (subharmonic) stage of 
disturbance development, the nonlinear effects were much more 
influential and this is clearly seen in Fig. 5.36b. In particular, two 
'side spectral peaks' appeared here, at the frequency a^ - co0/2 and 
spanwise wavenumbers ±K2A - ± 0.25. These peaks acquired their 
energy from preexisting 'background noise' and the values of co\ and 
£2,1 implies that 3D waves corresponding to them have a phase 
velocity close to that of the most-unstable   2D wave.  This means   that 

10 The    measurements  by  Breuer  et al.  discussed here  related  to  waves  excited by 
an   acoustic   pulse   with   a  different   amplitude   from   that   used   in   the   experiments 
by  Cohen  et al.   (1991).   Therefore  the   streamwise   locations   of the  three   stages 
of   wave-packet   development   mentioned   in   our   discussion   of  results   by   Cohen 
et al.   are  not  the  same  as  those  in  the  series  of experiments  considered here. 
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these 3D waves, together with the most-unstable 2D wave, form a 
resonant wave triad (but not necassary of Craik's 'fully-resonant 
type' where Eqs. (5.7) are valid precisely). Thus the growth of 
subharmonic modes corresponding to the side peaks and to spectral 
regions adjacent to them may be due to three-wave resonance or to 
secondary instability of the primary waves to subharmonic 
disturbances - cf. the discussion of the N-regime of boundary-layer 
development in Sees. 5.3 and 5.4. The velocity contours at x = 250 cm 
show that some streamwise elongated structures appeared, with 
some similarity to streamwise A-vortices. Note also the appearance of 
a group of waves, apparently produced by nonlinear wave 
interactions, with (#2,a)-values belonging to the 'low-£2, low-©' 
spectral   region   near   the   mean-flow    distortion   mode   with   (K2,o)) - 

(0,0). 
The two lower pairs of diagrams in Fig. 5.36 (Figs. 5.36c and 

5.36d) correspond to streamwise coordinates x = 270 cm and x =280 
cm, in the third, strongly-nonlinear stage of wave-packet 
development. The corresponding velocity contours show the 
formation at x = 270 cm of a system of elongated structures including 
spanwise-alternating streaks of fluid having in turn higher and lower 
streamwise velocity than the mean U(z). At x = 280 cm this system is 
more compact and gives the impression of approaching the 'turbulent 
spot' stage [other experimental results given in the paper by Breuer 
et al. (1997) allowed the authors to suggest that the formation of 
turbulent spots actually began near x = 282.5 cm]. The velocity 
spectrum at x = 270 cm shows that the primary band of waves 
centered at the most-unstable (0,co0)-wave has practically 
disappeared here, but the subharmonic bands with frequencies close 
to COQ/2 became considerably more pronounced. The spectral peak at 
the coordinate origin, and the adjacent region of Tow-#2, low-«' 
points corresponding to mean-flow distortions and nearly-2D low- 
frequency waves also grew considerably in comparison to those at x 
= 250 cm. In addition two small spectral bands appeared near the 
peaks at points (±2K2,i,0), produced by nonlinear interactions of 
(±£2,i,«i) and (0,G)0) = (0,2fi>i) modes. At x = 280 cm the primary 
spectral band adjacent to the point (0,«0) completely disappeared, 
bands around the subharmonic peaks at (±£2.i»Q>i) became less 
energetic than at x = 270 cm, while bands near points (0,0) and 
(±2K2,i,0), became much more pronounced and other peaks appeared 
near the points {±3K2A,a>{). [According to Breuer et al, diagrams more 
detailed    than   Fig.   5.36d    show   in   the   case   where    x   =  280    cm, 
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additional spectral peaks at points (0, (ox), (0, 3cox), and near the points 
(3K2l, 2(oy) and (3K2l, 3co{).] These results clearly agree with 
observations by Breuer and Landahl (1990) and Henningson et al. 
(1993) of the 'propagation of the disturbance energy along the K2- 
axis'. 

Further results of Breuer et al. (1997) describe in more detail 
the spatial and spectral structures accompanying the wave-packet 
development. In Fig. 5.37, contours in the (o),z)-plane of the 
frequency spectra P(co; x) = P(co;x,y,z) of velocity oscillations M(X,0 at 
points x = (x,y,z) are shown for y/S* = 4.7 and four values of x 
corresponding to the different development stages. These contours 
again illustrate that at x = 170 cm (i.e., in the linear stage) the 
disturbance energy is concentrated near the frequency &>0 = 0.09 
corresponding to the most-unstable T-S wave, and that near x=250 
cm (in the subharmonic stage) an additional band of oscillations, with 
frequencies close to o)0/2 = 0.045, appears. These figures also show 
vertical profiles of different spectral components, which agree well 
with the results of linear stability theory at x = 170 cm, while by x = 
250 cm they have become more complicated. However the data for x 
= 270 cm and 280 cm, relating to the strongly-nonlinear third stage, 
show rather energetic high-frequency components of «-fluctuations 
which are absent from Fig. 5.36. The reason for this discrepancy is 
apparently that Fig. 5.36 shows spectra of the ensemble-averaged 
velocity fields, and if the high-frequency oscillations have random 
phases they will be canceled by ensemble averaging. However, 
spectral contours in Fig. 5.37 were obtained from spectra computed 
for individual observations by subsequent ensemble averaging. It is 
clear that here contributions of oscillations with the same frequency 
but different phases to various individual spectra will be added to 
each other in the sum of individual spectra and will be represented 
by the ensemble-averaged contributions in the averaged spectra of 
Fig. 5.37. Therefore, the high-frequency velocity oscillations shown in 
Figs. 5.37c,d (but absent from Figs. 5.36c,d) must be real. They may 
be connected, e.g., with local velocity-profile inflections due to 
distortions of the local mean-velocity profiles by evolved 
disturbances;    such   local profile   inflections   were   also   observed    by 
Breuer et al. 

The appearance of high-frequency velocity fluctuations with 
random phases clearly means that the flow has acquired disorderly 
features typical of turbulence. Hence the observations summarized in 
Figs. 5.37a-d have a direct bearing on studies of the onset of 
randomness    in boundary-layer    flows.   Note  that   Breuer   et  al. also 
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consistently observed, during the late stages of instability 
development, the appearance of 'spike disturbances' of the same 
type as found by Klebanoff et al. (1962), and later by many others, in 
boundary layers excited by a vibrating ribbon. Therefore, the 
experiments of Breuer et al. proved very convincingly that spikes are 
a rather general phenomenon, unrelated to any special mechnism of 
disturbance generation. Moreover, since the authors repeated their 
observations many times, collecting an ensemble of observations 
under identical conditions, they were able to show that spikes are 
quite repeatable - they regularly appear at practically the same 
points and preserve the same main features in all repetitions. Hence 
the observations by Breuer et al. confirmed the earlier statement of 
Borodulin and Kachanov about the regular, non-random nature of 
spikes. On the other hand, LHSI-produced small-amplitude high- 
frequency oscillations have random phases and amplitudes, and thus 
these   disturbances   may   generate  the   early  flow  randomness. 

The final part of the paper of Breuer et al. is devoted entirely 
to discussion of the late-stage transformations of the wave packet 
studied. These transformations lead at first to the appearance of 
'turbulent spots' (as noted above, the authors found that their 
formation begins near x = 282.5 cm; recall that it is connected also 
with the latest stages of spike development discussed at the end of 
Sec. 5.5) and then to the onset of the laminar-flow breakdown to a 
chaotic ('turbulent') state. [Quite another approach to the study of 
these transformations was sketched by Waleffe (1995) in the paper 
cited above; see also the recent survey by Bowles (2000).]. Additional 
information about the 'breakdown-stage' of wave-packet 
development is contained in Gaster's (1990) description of the results 
of his experiments; less detailed observations relating to this stage 
were described by Tso et al. (1990). However, this final stage of 
instability  development is  beyond  the  scope  of the present chapter. 

In the above discussion of the (temporal or spatial) 
development of localized disturbances in a laminar boundary layer it 
was usually assumed that the initial disturbance had a form close to 
that sketched in Fig. 3.2 of Chap. 3. This rather special assumption 
was accepted here, since it was widely used in numerical simulations 
of this development performed by various researchers. Therefore, 
even in the analysis of experiments where the initial disturbance 
was produced by some 'disturbance generator' and clearly did not 
coincide with that in Fig. 3.2, the data were often compared with 
numerical results  for this  special initial form of disturbance. 

One of the purposes of the recent numerical-simulation work 
by Bech, Henningson   and Henkes  (1998)   was just the  verification   of 
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the influence of the initial form of a localized disturbance on its 
subsequent ..development. The authors also made an attempt to 
verify the accuracy of the approximate method of temporal 
numerical simulation of disturbance development, used in this and 
almost all previous simulation studies. Finally, apparently the main 
object pursued by the authors was the determination of the influence 
of non-zero pressure gradient dp/dx on the development of 
localized  disturbances  in  a laminar boundary layer. 

To determine the influence of the initial form of a disturbance, 
Bech et al. chose three different forms and solved the corresponding 
initial-value problems numerically for the full Navier-Stokes 
equations. All chosen forms of the initial velocity field u(x) = 
{u(x),v(x),w(x)}; where x = (x,y,z), corresponded to 'localized 
disturbances', with values of u(x) differing noticeably from zero only 
in a bounded region surrounding the coordinate origin. Moreover, all 
these disturbance forms could be represented in terms of a scalar 
streamfunction y(x,y,z) which for the three cases considered had the 
forms: 

y = Axyz3exp(- [x 2+y2+z2]), (5.18) 

y =Axz3exv(- [x2+y2+z2]), (5.19) 

and 
y = 0.5ArVexp(- [r2 + z2]),     r2 = x2 + y2. (5.20) 

Here the coordinates x, y, z are assumed to be non- 
dimensionalized by some length scales k, ly and lz (defined in the 
paper of Bech et al. separately for three models), A is a disturbance 
amplitude, small in comparison with the free-stream velocity U0, and 
the velocity fields [u, v, w} in the three cases are expressed in terms 
of the function y    by the following three different equations: 

{u, v, w} = {0, -dy//dz, dy/dy), (5.18a) 

{u,v,w} = {dy/dz, 0, -dy/dx }, (5.19a) 

and 

{u, v, w) ={-{dy/dz)xr2, -{dy/dz)yr "2,  {dy/dr)rJ}. (5.20a) 
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The simulations were carried out with Re* = 950 at x = 0, and all the 
lengths, velocities and times relating to process of disturbance 
development were made dimensionless by the length <5* at x = 0 and 
the free-stream velocity     UQ. 

The first model of Eqs. (5.18) and (5.18a) just corresponds to 
the form sketched in Fig. 3.2 of Chap. 3; the equations given here for 
the initial velocity field agree exactly with those used by Henningson 
et al. (1993), and are almost identical to those used by Breuer and 
Haritonidis (1990) and Breuer and Landahl (1990). (Recall the 
remark in Chap. 3, p. 28, that in this model disturbance the initial 
streamwise velocity w(x) is everywhere equal to zero, but it 
undergoes rapid transient growth and soon becomes greater than the 
other two velocity components.) A schematic form of the initial 
vertical-velocity contours for this model is shown in Fig. 5.38a. In the 
second model (5.19), (5.19a) the initial spanwise velocity v(x) is 
equal to zero; this model describes a wave packet where the energy 
is mainly concentrated in plane 2D waves. The initial velocity 
contours for this model are shown in Fig. 5.38b. The third model 
(5.20), (5.20a) has already been used in numerical simulations by 
Henningson et al. (1993); in the case of this model it is assumed that 
lx = ly and hence here the initial disturbance is axisymmetric with 
respect to the vertical z-axis  (see Fig.  5.38c). 

The numerical simulations of the disturbance development in a 
boundary layer presented in the main part of the paper by Bech e t 
al. were temporal ones, i.e., they were based on the assumption that 
the flow is plane-parallel and the spatial Fourier-components of 
disturbance velocities evolve in time. (As is now usual, the parallel- 
flow assumption was supplemented by the assumption that the 
boundary-layer thickness 6 is not constant but grows with time; cf. 
footnote 4 on page 64.) To verify the accuracy of the somewhat 
simplified temporal approach, one of the temporal simulations was 
repeated, using a spatial approximation which assumes that the flow 
is steady but may be nonparallel, and that disturbances are time- 
periodic and spatially evolving. The latter approximation is evidently 
more accurate than the temporal one but it is also more complicated 
and more expensive in computer time. Comparison of the results of 
the two simulations revealed some small inaccuracies of the 
temporal-simulation results, but also showed that these inaccuracies 
appear only at rather late stages of wave-packet development, while 
the overwhelming majority of predictions of the temporal 
simulations        agreed       quite       satisfactorily,        qualitatively        and 
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quantitatively, with those of the approximate spatial simulation. 
Thus, it was. concluded that the results of temporal simulations were 
sufficiently reliable  to be  investigated in detail. 

At the beginning of the paper of Bech et al. some simpler 
small-amplitude results were considered. Here the authors analyzed 
numerical solutions of the linear initial-value problem 
(corresponding to linearized N-S equations) for three chosen forms of 
the initial velocity field, where the streamfunction amplitude A was 
chosen   to make   the   maximum    \w0\  of the   initial   vertical   velocity 

equal to \0~5Uo. (Solutions were computed for two values of the 
pressure gradient, but for now only the case of a Blasius boundary 
layer, with dp/dx = 0 will be discussed.) 'Linear' (given by the linear 
stability theory) temporal growths of the disturbance energy and of 
the maximal values of streamwise and vertical velocities were 
computed for various values of the time t. It was found that results 
for the three initial conditions described differ considerably from 
each other, as must be the case since both the partition of the 
developing disturbance into convective and dispersive components, 
and also the TS-wave composition of the dispersive component, were 
different in the three cases. Then the flow patterns arising from the 
three chosen initial conditions were reconstructed, for the latter 
stages of the 'linear development', from simulation results. Figs. 
5.39a-f show velocity contours of u and w for the dimensionless 
time t = 300. Figs. 5.39a and 5.39c show that in cases 1 and 3 
[corresponding to initial streamfunctions (5.18) and (5.20)] the 
elongated streaky structures, composed of alternating streaks of low 
and high streamwise velocities, emerged in the flow before t = 300. 
It seems evident that these streaky structures were produced here 
by the transiently-growing part of the disturbance, subjected to 
Landahl's (1980) mechanism of streamwise elongation. This 
mechanism affects only the velocity u; therefore contours of vertical 
velocity w in Figs. 5.39d-f, which again are quite similar to each 
other in cases 1 and 3 but have somewhat different forms in case 2, 
represent typical wave-packet structures corresponding to the 
dispersive part of the developing disturbance. Recall that in case 2 
[initial streamfunction (5.19)] the initial disturbance had vanishing 
spanwise velocity and contained no (0,fc2)-modes, so that the 
generation of spanwise inhomogeneity played an important part in 
the formation of streaky structures. For this reason the initial 
disturbance (5.19), (5.19a) produced no streaky structures by t = 300 
and Fig. 5.39b is quite different from Figs. 5.39a and 5.39c. 
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Bech et al. also analyzed the appearance of weakly-nonlinear 
effects on disturbance development. They first of all supplemented 
the   computations    with   initial   amplitude    A   corresponding    to   the 

condition   \w0\/Uo = 10~5 with   computations    for  larger   values   of A 

corresponding to \w0\/Uo = 5xl0-5 and 10-4. Then the authors studied 
the expansions of their solutions in powers of the amplitude A, and 
extracted from these expansions the linear terms (describing the 
results of the linear stability theory) and the weakly-nonlinear 
quadratic (proportional to A ) and cubic (proportional to A ) terms. 
This procedure allowed them to isolate contributions of some 
nonlinear interactions to the developed disturbances; in particular, 
the component corresponding to wave vector (0,2fc2,o) (and marking 
the beginning of the energy transport to higher spanwise 
wavenumbers) was detected in the quadratic part of the disturbance, 
accompanied by the most energetic T-S wave of the linear theory, 
with wave vector k = (£i,o,&2,o)- 

To study strongly-nonlinear effects on wave-packet 
propagation, the authors further extended the range of values of the 
initial disturbance amplitude, and in addition to the above- 
mentioned   values   they   carried   out  numerical    simulations   for  cases 

where    \w0\/Uo  =  10-3,  5xlO~3,  and   10-2.  A  preliminary    study    of 

numerical-simulation results for disturbances with \w0\/Uo = 5x10~ 
showed that in the case of the third model [Eqs. (5.20), (5.20a)] 
strongly nonlinear effects develop more slowly than in the cases of 
the other two models of the initial disturbance. Therefore, it was 
found that for complete analysis of the nonlinear development of the 
disturbance (5.20), (5.20a), the range of investigated values of t 
should be considerably extended. For this reason the authors decided 
to study strongly nonlinear effects only for the first and second 
models   of the  initial  disturbance. 

For these two models, the authors were able to cover, in their 
numerical simulations, all the stages of nonlinear development of a 
localized disturbance in the Blasius boundary layer found in the 
experimental and numerical-simulation studies of earlier authors. In 
particular, the subharmonic disturbance growth produced by 
secondary subharmonic instability of primary waves was detected in 
data relating to case 2, with the initial conditions (5.19), (5.19a), and 
appeared here much earlier than in the experiments of Cohen et al. 
(1991) with a considerably smaller initial disturbance amplitude. 
Also   in  case   2,  when   the   subharmonic    growth   of oblique    waves 
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began, the generation of the streaky structures, absent from Fig. 
5.39b, also began and took practically the same form as in the case of 
the other two initial conditions and in the experiments by Cohen et 
al. (1991) and Breuer et al. (1997). This means, in particular, that 
exactly as in the experiments, nonlinear effects led to cascade 
transfer of energy up the spanwise-wavenumber axis. The numerical 
simulations of Bech et al. also show that the streaky structures 
sometimes reach breakdown only with a very high amplitude of 
disturbance velocity - e.g.,  in the case of the initial conditions   (5.18), 

(5.18a) with \w0\ = 5x10~3 the streaks continue to exist at an 
amplitude of streamwise-velocity oscillations close to 30% of Uo. This 
demonstration of the high value of velocity amplitude needed for 
breakdown of streaky structures agrees, in particular, with results 
by Reddy et al. (1998) relating to streaks in a plane-channel flow. 
Nevertheless, breakdown of the streaky structures, and emergence of 
the disorderly high-frequency fluctuations accompanied by rapid 
increase of the disturbance kinetic energy and of the maximal values 
of velocity fluctuations", were also detected in the numerical 
simulations for both the high-amplitude initial conditions, if the 
value of \w0\ (and hence also of A) was large enough. Bech et al.'s 
large-amplitude simulations of disturbance development also 
revealed many other details of streaky-structure breakdown, 
transition to the unordered flow regime, and the accompanying flow 
phenomena. However, again these results are outside the scope of 
this   chapter. 

As noted above, a considerable part of the paper by Bech et al. is devoted 
to the study of the development of localized disturbances in boundary layer 
with an adverse pressure gradient dp/dx > 0 decelerating the fluid motion. 
Boundary layers with non-zero pressure gradients are met very often i n 
practical applications of fluid mechanics, and have therefore attracted much 
attention by investigators. Therefore, it is only natural that the nonlinear 
instability of pressure-gradient boundary layers is considered in a great 
number of publications; the papers and dissertations by Bertolotti (1985), 
Herbert and Bertolotti (1985), Wubben et al. (1990), Goldstein and Lee (1992), 
Kloker (1993), Zel'man and Maslennikova (1993a), Kosorygin (1994), Kloker 
and Fasel (1995), van Hest (1996), van Hest et al (1996), Corke and Gruber 
(1996), Liu (1997), Liu and Maslowe (1999), and Borodulin et al. (2000) 
represent     only    a small   part    of  this    work.    Bech   et   al.  were    interested    i n 

11  Note   that   the   growth   of  the   disturbance  kinetic   energy   does   not  necessary 
imply  the  growth   of disturbance  velocities.   For  example,   in   the  case  of 
transient   growth   of   localized   disturbances   in   plane   shear   flows   studied   by 
Landahl   (1980),   the   growth   of disturbance   energy   due   to   the   "lift-up   effect" 
described   by   him   is   produced   by   the   disturbance   elongation   increasing   its 
volume,   and  not  by  the   growth   of velocities   of individual  fluid  particles. 
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boundary layers with adverse pressure gradient since here, at a not-too-small 
absolute value, of the Falkner-Skan parameter ß (see Chap. 2, p. 119) the 
profile U{z) has a pronounced inflection point where U"(z) = 0, and is 
inviscidly unstable with respect to small-amplitude disturbances according to 
the classical results of Rayleigh (see Chap. 2. Sec. 2.82). This increased linear 
instability of a laminar boundary layer in adverse pressure gradient (in 
comparison to the case of a boundary-layer with zero pressure gradient) must 
also strongly influence the nonlinear instability effects and produce some 
additional phenomena worth special study. Bech et al, who performed 
simulations for ß = 0 (i.e. dp/dx = 0) and ß =-0.155, in fact detected a number of 
interesting differences between disturbance developments in these two flows. 
However, volume limitations give no possibility for discussion in this book of 
results   for   boundary   layers   with   non-zero   pressure   gradients. 
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Figures for Chapter 5 
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Figure    5.1, (a) and (b).    (For caption see the next page.) 



Figure    5.1. Examples  of calculated  resonant  wave  triads  in 
the Blasius boundary layers with Re* = 882    and Re* = 750. 

(a) Contours in the (fc,,fc2)-plane of phase-velocity values cr = 
<Rec = SRe(fi)/Jfc,) and values of c; = 3mc = Zmico/k^  (determining the 
growth, or dacay, rate kxcx) for temporally evolving T-S waves in a 
boundary layer with Re* = 882. Since cr(fc„fc2) = ct{kx,-k2) and cx(kx,k2) 
= cl(kx,-k2), contours for cs   are shown only for k2 < 0, and those for cr 

only for k2 > 0. Two resonant triads with wave vectors k^ = (k, 0), k2 3 

= (k/2, ±k2) satisfying the condition cr(fc, 0) = c:(k!2, ±k2) are shown 
by arrows  [after Craik (1971)]. 

(b) Contours in the (fc,,fc2)-plane of phase velocity cr = SRec = 
5Re(o)/fc,) (the left diagram) and of cx = 3mc = 3m(<u/fc,) (the right one) 
for temporally evolving T-S waves in a boundary layer with Re* = 
750. Two examples of resonant triads  are  shown by arrows  [after 
Schmid  and Henningson  (2000)]. 
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Figure    5.2.    Temporal growth (or decay) rates /:,cL = 3m© for 
2D    and 3D    components of resonant triads of Craik's type with 
various   values  of  streamwise  wavenumber  &, of 2D wave    in Blasius 
boundary layers with (a) Re* = 000, and (b) Re* = 000 [after Schmid 
and   Henningson   (2000)]. 
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Figure    5.3.  Calculated  dependence  of the  wave  amplitudes 
IA,(x)l, i = 1, 2, 3, on Re = (U0x/v )m ~ xm for the wave triad 
consisting of a plane wave 1 of frequency co    and wave vector k,= (k, 
0) and oblique waves 2 and 3 of frequency col2 and wave vectors k2 3 

= (fcp±fc2) in the case when initial (at Re = 525) amplitudes L4i0l and 
phases 0lO satisfy the conditions:   IAl0l » IA20I   »IA3i0l, 01O = <t>2,o + ^3,o- 
It was assumed here that F = cov/U0

2 = 115xl0"6 and K2 = vk2/U0 = 
0.18xl0'3; the values of k   and k{  were  then determined from the 
Orr-Sommerfeld equations  (2.44)  and  (2.41)  which  showed  that fc, « 
k/2  [after Zel'man  and Maslennikova  (1993a)]. 
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Figure    5.4.  Threshold  amplitude A    of the plane T-S wave 
with   streamwise   wavenumber  £, in a Blasius boundary layer for the 
onset   of  three-dimensionality   with   spanwise   wavenumber   k2  [after 
Massev (1968b)]. Curve 1: Re* = 1203, kx = 0.43; curve 2: Re* = 519, 
k{  = 0.27.  All the quantities are non-dimensionalized by scales  5* 
and U0. 
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Figure    5.5, (a) and (b).      (For caption see the. next page.) 
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Figure    5.5.  Examples of the amplitude spectra Pu(f) of 
streamwise-velocity   fluctuations   u(t) in a laboratory flat-plate 
boundary  layer disturbed  by  a ribbon  vibrating  with  frequency f0. 

(a) Typical form of spectrum Pu(f) measured by  Kachanov, 
Kozlov and Levchenko  (1977)  [after Kachanov (1994a)].  Peaks 
denoted as /,, fm, 3fm, 2f{, 5fU2 and 3f{   correspond  to  frequencies /„, 
/0/2, 3f0/2, 2f0, 5/0/2 and 3f0. 

(b) Spectra   p (f) measured inside a boundary layer at two 
values  of frequency /0 and coordinate x      (measured from plate 
leading edge) but fixed values of y   and z : l./0 = 96.4 Hz (F0 = 
2K/OV/U0

2
 = 109xl0"6), x = 600 mm (Re = (U0x/v)m = 608); '2./0 = 

111.4 Hz (F0 = 124x10"6),  x = 640 mm (Re = 633) [after Kachanov and 
Levchenko   (1984)]. 
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Figure    5.6.  Dependence of the dimensionless  amplitudes A = 
u'/U0 of the primary plane wave (1) and subharmonic oblique waves 
(2) on the coordinate x   [and Re = (U0x/v)U2] at y = -2.5 mm, z/5 = 
0.26 (5     is  the boundary-layer thickness),  according  to  measurements 
by  Kachanov  and Levchenko  (1984). 



I 
I 

100-1 

0 -OJQ-O- -O-O-CXQ-O-O o-o-c 

01° 

200 

At (%) I 

tj (mm) 

Ax{%) 

Figure    5.7.  Measured dependence of phases  01  and <j)u2, and 
amplitudes   A, andA1/2 of the primary plane wave (1) and 
subharmonic  waves  (2)  on  the  spanwise  coordinate y    [after 
Kachanov  and Levchenko  (1984)]. 
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Figure    5.8.    (a) Regular system of A-vortices  typical  for the 
K-regime  of disturbance  development  in  a boundary  layer, 
(b) Staggered system of A-vortices typical for the N-regime of 
disturbance   development.  The  figures   show  flow   streaklines 
appearing when the disturbed flow is visualized by  smoke  [after 
Herbert et al.  (1987)]. 
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Figure    5.9.     Spanwise distributions of phases  <p  (a) and 
maximum  (with  respect to z)  amplitudes A (b) for the primary plane 
wave of frequency /    (o) and subharmonic oblique waves of 
frequency //2 (•) for the case 3 of Corke and Mangano's 
measurements   [after  Corke  and  Mangano  (1989)]. 
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Figure     5.10.     Streamwise     developments  of maximum 
amplitudes  of streamwise  velocity  fluctuations  for  (a)   subharmonic 
waves  of frequency //2, and (b) primary waves  of frequency /   in the 
cases 1, 2, and 3    [after Corke and Mangano (1989)]. 
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Figure     5.11.   Streamwise   development   of   maximum 
amplitudes of artificially exited plane wave of frequency 36 Hz and 
oblique  wave of frequency   16 Hz,  together with development of the 
produced by their nonlinear interaction 3D wave of frequency 20 Hz 
[after Corke (1995)]. 
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Figure     5.12.     Streamwise  development  of a  number  of waves 
produced  by   nonlinear  interactions   of  waves   from   'detuned 
resonance triad'  artificially excited by Corke  [after Corke (1995)]. 
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Figure    5.13. Dependence of the amplification rate G0 = 
dA(x)/Adx   of the  oblique-wave  amplitude A s A2=A3 of a resonant 
wave triad on K2 = k2v/U0 (and k2/kx) for different values of the 
plane wave amplitude A, [and F, s <ü,v/£/0

2 = 115xl0"6, Re+ = 
(£/0;c/v)1/2  =  640].  All dimensional  quantities  are  non-dimensionalized 
by scales <5+= (vx/U0)

m and (/„. Curves 1, 2, ..., 6 correspond to A, = 
0.14,  0.21, 0.28,  0.40, 0.53,  0.72%, dotted line shows the dependence 
of optimal values  (k2/kx)pr and (£2)pronA,   [after Zel'man  and 
Maslennikova  (1953a)   and  Kachanov  (1994a)]. 
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Figure     5.14. Dependence of the the value of (k Ik ) 
corresponding  to  the  most  amplified  oblique  subharmonics  of the 
plane wave on  the plane-wave amplitude A,.   Experimental lit 
correspond  to laboratory observations:   1  -  of Kachanov and 
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Figure   5.15, (a), (b) and (c).   (For caption see the next page.) 
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Figure   5.15.  (a) Comparison of the measured by Corke and 
Mangano   (1989)  maximal  values Amax  of the  oblique-wave 
amplitudes   A2=A3  in  three  studied cases  with  the  theoretical 
dependence  of Amax on k2/kl   which follows  from the  application to 
the   their  experiments   results   of  the   secondary-instability   theory 
developed  by  Herbert  (1983b,1988a)   and  Herbert  and  Bertolotti 
(1985)  [after Corke and Mangano (1989)]. 

(b) Comparison of the maximal oblique-wave growth rate Gmax 

observed by Corke and Mangano in three cases studied in their 
experiments  with  theoretical  estimate  of the  dependence  of Gmax on 
k2/kl   following  from  Mankbadi's  theory  of critical-layer  nonlinearity 
[after  Mankbadi   (1993a)]. 

(c) Comparison of Mankbadi's theoretical estimate of the 
dependence  of Gmax on k2/kl   with  the  corresponding  theoretical 
estimate  by  Herbert (1988a)  and  results  of numerical  simulation by 
Spalart and  Yang  (1987) of disturbance development in  a boundary 
layer with a vibtrating ribbon in it;    for F = cov/U0

2 = 58.8x10"5 and 
initial conditions    A,(0) = 1.4% and Re+(0) = 950  [after Mankbadi 
(1993a)]. 



Figure     5.16.   Measured  (points)  and calculated (curves) 
vertical profiles  of the  amplitude Am(z) (left)    and the phase 01/2(z) 
(right) of the subharmonic 3D wave of frequency  col2   resonantly 
amplified in the N-regime of instability development in a Blasius 
boundary  layer.   Experimental  data  by   Kachanov   and  Levchenko 
(1982).  Calculations:   1   -  secondary-instability  theory  of Herbert 
(1984a); 2 - numerical simulation of Fasel et al. (1989); 3 - resonant- 
triad  theory of Zel'man  and Maslennikova (1989,1990,   1993a)  [after 
Kachanov   (1994a)]. 
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Figure   5.17, (a), (b) and (c). (For caption see the next page.) 
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Figure     5.17.   (a)  Resonant  streamwise  amplifications  of the 
plane  wave  amplitude A,(x) (results  1, 2, 3) and of the amplitude 
A1/2(x)  of the  two  subharmonic  waves  of twice  smaller frequency 
(results 4,  5,  6) during the initial stage of the N-regime of instability 
development.   Experimental  data  (points   1   and 4)  by  Kachanov  and 
Levchenko (1982);  calculations  (curves):  2 and 5  - Herbert's (1884a) 
theory; 3  and 6 - numerical simulations by Fasel et al.    (1989). 

(b)  and (c) The same resonant amplifications at more late 
stages of the N-regime when values of A1/2(x) (2, 2' and 5)    overtake 
those of A,(x) (1, 1', 3 and 4); Re=(x£/</v)1/2 ~ x m.   (b):   expereimental 
data (points  1'  and 2') by Saric et al. (1984),    calculated curves  1 and 
2 - theory by Maslennikova and Zel'man (1985) and Zel'man and 
Maslennikova  (1993a);  dotted  curve  3  -  theory taking  non- 
parallelism into account,  (c):  experimental data (points 4 and 5) by 
Corke  and Mangano  (1989);  theoretical  calculations  (curves)  by 
Crouch and Herbert (1993)  [all figures after Kachanov (1994a)]. 
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Figure  5.18.   Downstream-growth   curves   for  amplitudes  of 
five-wave  disturbance   system  in  a  Blasius  boundary   layer.  The 
system includes  the plane wave  1  of frequency  a>    and wave vector 
{k,  0}   and  oblique-wave  pairs  2-3   and 4-5   with  frequency-wave 
vector values  {co/2, k{, ±k2} and [coll, k{*, ±k2*} where F - cov/U0

2 = 
230xl0"6, K2 = k2v/U0 = O.nixlO"3, K2* = k2*v/U0 = 0.15xl0"3; Re = 
(U0x/v)in  [after Zel'man and Maslennikova (1993a)]. 
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Figure     5.19.   Amplification  curves   for  seven-wave   system 
including  the primary plane wave  0     with     frequency-wave vector 
(f-w)  combination   {©„,*, 0}, a pair of secondary oblique waves 1-2 
with    f-w  combination   {(O0/2, ky,±k2}  and two pairs of tertiary 
oblique waves  3-4 and 5-6 with f-w combinations   {a)0/4, k{\ ±k2' } 
and   {ö)0/4, k", ±k2"}. Here F0 = co0v/U0

2 = 122xl0"6, k2/k{ =2, k2Wk{' = 
2.8, k"/k " = 3.44, Re* = (UQ8*/v)m [after Zel'man and Maslennikova 

(1993b)]. 
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Figure    5.20.   Downstream  growth  of spanwise  modulation  of 
the  amplitude  u'     of streamwise  disturbance  velocity in  a boundary 
layer disturbed  by  vibrating ribbon. 

o - data for x = 7.6 cm; A - for x = 15.2 cm; x - for x = 19cm, 
where x    is measured from the trailing edge of the ribbon;  1  - 
modulation 'peaks', 2 - 'valleys'  [after Klebanoff et al. (1962)]. 
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Figure     5.21.  Typical single and double spikes in a boundary 
layer flows  [after Klebanoff et al. (1962)]. 1 - 1st spike; 2 - 2nd spike; 
T -  fundamental  period  of spike repetitions. 
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Figure     5.22.     Amplification of total intensity of streamwise 
disturbance   velocity   u(x,t)  and  amplitudes  of its  harmonics  with 
frequencies  cov co2, ... , co6 (symbols and curvesl, 2, ... ,6; co{ - 
fundamental  frequency  of primary  T-S  wave,   con = n(ax) observed at y 
corresponding  to  peak position  of spanwise  modulation,   fixed  value 
of z    and variable x-coordinate.   Streamwise  intervals   Is,   2s,  3s   - 
places of formation of the  1st,  2nd, and 3rd spike [after Kachanov et 
al.  (1984) and Kachanov (1994a)]. 
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Figure     5.23. Vertical (left) and spanwise (right) profiles of 
the  amplitudes A{ (bottom) and phases (j>-t (top)   of   streamwise-velocity 
harmonics    with frequencies  co{, a>2, ... , colQ  measured at the stage of 
developed spikes (curves  1, 2, ... ,  10)    [after Borodulin and Kachanov 
(1992)  and Kachanov (1994a)].  Mean-velocity profile is  added to 
vertical   amplitude  profiles   to  show   the  boundary-layer  thickness. 
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Figure     5.24.     Streamwise development of values  of 
amplitudes   An m of  (n,m)-Fourier  components  of velocity   u(x,t)   at 
the heights z     where these  amplitudes  takes  maximal values  [after 
Rist and Fasel (1995)]. 

(n,m)-Fourier   component   corresponds   to   frequency   co„ = n<a{   and 
spanwise    wavenumber   klm = mk0    (where 0)x   -   fundamental   frequency   of 
primary   wave,   k0   -   wavenumber   of   the   fundamental   spanwise   periodicity   (0,1) 
shown  in Fig.  5.21).  Symbols  (0,0)  and (1,0) correspond  to amplitudes  of the 
'mean   flow   correction'   and   'primary   2D   wave'. 
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Figure     5.25.    Two examples of A-vortices   appearing  at  two 
time  instants  in  the  numerical   simulation  of unstability 
developments in a flat-plate boundary layer by Rist and Fasel. 

Shown   here   three-dimensional   A-shaped  structures   are  bounded  by 
surfaces  I77J = constant where 77 x   is the ^-component of flow 
vorticity;  A   is the primary spanwise wavelength clearly seen in Fig. 
5.20 [after Rist and Fasel (1995)]. 
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Figure    5.26.    Comparison of 'spike signal' in the (u't t, y)~ 
space  (u'    is  the stremwise disturbance velocity measured in parts of 
U0)     appearing  in  numerical  simulation  of boundary-layer instability 
development by Rist and Kloker at x = 500 mm, z = 8 mm (a) with 
the  'spike signal' observed at the same values of x   and z   in the 
corresponding  laboratory  experiment  of Kachanov  and  Borodulin  (b) 
[after Rist and Kachanov (1995)]. 
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Figure     5.27.  (a) Dependence of the dimensionless height z/S 
(where   S     is the boundary-layer thickness) of the center of an 
appearing  spike  on  streamwise  coordinate x     during spike 
downstream  evolution,     (b)  Dependence  on x    of the streamwise 
velocity cs    of a spike [after Borodulin and Kachanov (1994)]. 
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Figure    5.28.  Schematic form of a family of Ryzhov's three- 
parameter  soliton  solution of the  Benjamin-Ono  equation  (5.16) 
corresponding   to  various   values  of the  amplitude  parameter A   and 
fixed values  of other two parameters  (determining scales  of the 

T 

dependence  of A   on t   and x). Here \ = T'1 \A{t)dt    is the mean 
0 

amplitude,  A',A+   and T0    are some numerical form characteristics 
and T    is fundamental spike period [after Kachanov, Ryzhov and 
Smith (1993)]. 
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Figure     5.29.   Experimental  (points) and theoretical (curves) 
dependencies   of  soliton  form  characteristics  A',A+   and T0   on the 
soliton   magnitude Am = (A++ A)/2.   Theoretical  curves   correspond  to 
shown in Fig.  5.28  solution of B-0 equation with appropriately chosen 
parameter values; points  - data of Borodulin and Kachanov  (1988) 
[after Kachanov, Ryzhov and Smith (1993)]. 
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Figure   5.30. The dependence on t of the growth curve G(t) = 
E(t)/E(0) for the energy E of plane-wave disturbances with lq = 1 
Tall physical quantities are non-dimensionalized by scales H^H/2 
and U = LT(H/2)] in a plane Poiseuille flow between walls at z= 0 and 
z = H. °The curves labelled 'Unstable' and "Stable"correspond to the 
'optimal' 2D wave having the greatest transient growth in the 
linearly unstable Poiseuille flow with Re = UQHx/v - 8000 and linearly 
stable flow with Re = 5000, respectively, while 'Modal' curve shows 
the growth of the unstable solution of the Orr-Sommerfeld 
eigenvalue problem with kx - 1 and Re = 8000 [after Reddy and 
Henningson(1993)]. 
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Figure     5.31. (a) The dependence of the energies £   of a 
number of (n,m)-Fourier  components   [i.e.,   waves   with  frequencies 
and   spanwise  wavenumbers   (ncoQ,mk20)] on x    in a Blasius boundary 
layer with  a pair of oblique waves with frequencies  and spanwise 
wavenumbers   (coQ,±k20). (a) Dependence of E   on (x -xQ)/S*   in the 
case when the initial energy of (l,l)-mode is equal to  1   [after Berlin 
et al. (1994)].    (b) Dependence of E    (measured in some conventional 
units) on x    (in mm); coordinate x0    of the 'wave generator' is here 
close to 186 mm [after Berlin et al.  (1999)]. 



Figure     5.32.   Computed   energy-growth   curves   for   a   number 
of (n.m)-waves   with   streamwise   and   spanwise   wavenumbers 
(nkl0,mk20)  in  a  boundary  layer  disturbed  by   'primary  oblique 
waves'   with  wavenumbers     (kl0,±k20) and a  'weak noise'  consisting of 
supplementary   small-amplitude   (n.m)-waves  with  n =0, 1, 2, and m 
= 0,  1, 2 [after Schmid and Henningson (2000)]. 



10" 

>^ 

<x> 
£10" 
a» 
o c 

JS 
2 
w 
Q 

10 
-6 

vertices 

TS waves 

oblique waves 

200 400        600        800       1000      1200 
Transition Time 7J, 

1400      1600      1800      2000 

Figure     5.33. Dependence of the transition time T0   on the 
disturbance  initial  energy  E0 (which is proportional to A0

2) for three 
transiton scenarios:  i)   'oblique transition'   (labelled  'oblique waves'), 
ii)  TS-wave-secondary-instability  scenario'   (K-regime,  labelled   'TS 
waves')  and iii)   'streak-breakdown scenario'   (labelled   'vortices'   since 
streaks  are  produced by  streamwise  vortices  which  are  (0,2)- 
structures).  The  results  are  for temporally  growing  Blasius  boundary 
layer with initial Re* = 500 [after Schmid et al.  (1996)]. 
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Figure    5.34. Computed contours in the (x;z)-plane of the 
streamwise disturbance velocity u{x,y,z,t) at y= 0 and several values 
of t for a localized disturbance of finite amplitude with given value 
at t = 0. Solid and dotted lines represent positive and negative 
velocity values; contour spacing is 2% of U0   [after Breuer and 
Landahl(1990)]. 
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Figure   5.35. Contours in the horizontal (x,y)-plane of the 
vertical velocity w{x,y,z,t) at z = 0.99, t = 117 (all dimensional 
quantities are non-dimensionalized by scales ö* and U0). Solid and 
dotted lines represent positive and negative velocity values; contour 
spacing is 0.001 [after Henningson et al. (1993)]. 
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Figure   5.36. Overall view of the dependence of velocity 
u{x,y,z,t) on y and x = {t- TQ)U0//(x -XQ) (left-hand column) and of 
the dependence of corresponding wavenumber-frequency spectra on 
co andic2 [right-hand column) at z/ö* =0.5 and four different values 
of x [data for separate x-values are noted by marks (a), (b), (c) and 
(d)]. Solid and dotted lines show positive and negative values, 
respectively [after Breuer et al (1997)]. 
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Figure     5.37. Contours in the (ö),z)-plane   of  averaged 
frequency  spectra  Pz(<a) of streamwise  velocity  fluctuations  u(x,y,z,t) 

at four different values of x    and v/<5* = 4.7. Spectra Pz(co) were 
computed  for  a  number  of independently  observed  velocity  fields 
and   then  were  averaged  over  the  ensemble  of  made  observations 
Tafter  Rre.ne.r  p.t nl.   nQQ7^1. 
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Figure     5.38. Contours in the (x,y)-plane of the initial vertical 
velocity  w(x,y,z) at z/S*    = 1.5 for three selected models of the initial 
velocity field. The marks (a), (b) and (c) correspond to the first, 
second and third models  [after Bech et al.   (1998)]. 
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Figure   5.39. (a)-(c) Contours in the Uz)-plane of the velocity 
u(x,y,z,t) at y = 0 and t = 300 for three selected models of the initial 
velocity field. Marks (a), (b) and (c) have the same meaning as in Fig. 
5.38. 

(d)-(f) Contours in the (x,y)-plane of the vertical velocity 
w{x,y,z,t) at z=l and t = 300 for three selected models of the initial 
velocity field. The marks (d), (e) and (f) correspond the first, second 
and third models. 

Given results represent computations at Re* = 950 and such 
amplitude A that maxjw(x,0)l = 10"5. All dimensional quantities are 
made dimensionless by scales ö* and U0. 
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Figure    5.1. Examples  of calculated resonant wave  triads  in 
the Blasius boundary layers with Re* = 882    and Re* = 750. 

(a) Contours in the (Ä;1,Ä;2)-plane of constant phase velocity cr = 
SRec = SRe (©/£,) and   constant value of c{ = 3mc = 3m(ö)/^) 
(determining the growth, or dacay, rate k{ct)  for  temporally  evolving 
T-S waves in a boundary layer with Re* = 882. Since ct(k1,k2) = cx(kv- 
k2) and c^k^kj = c{(kv-k2), contours for c{   are shown only for k2 < 0, 
and those for cr only for k2 > 0. Two resonant triads with wave 
vectors  k, = (k, 0), k2 = (klf k2) and k3 = (*„ - k2)  satisfying  the 
conditions   kx = k/2 and cr(fc, 0) = c£kx, k2) are shown by arrows [after 
Craik (1971)]. 

(b) Contours in the (Jtp/:2)-plane of constant phase velocity cr = 
SRec = SRe^/A:,) (the left diagram) and of constant value of cs = 3mc = 
Zm{(o/kx) (the right one) for temporally evolving T-S waves in a 
boundary layer with Re* = 750. Two examples of resonant triads are 
shown by arrows  [after Schmid and Henningson (2000)]. 

Figure    5.2.    Temporal growth (or decay) rates klci = 3mö) for 
2D    and 3D    components of resonant triads of Craik's type with 
various  values  of streamwise  wavenumber kx of 2D wave   in Blasius 
boundary layers with (a) Re* = 000, and (b) Re* = 000 [after Schmid 
and  Henningson  (2000)]. 

Figure     5.3.   calculated  dependence  of  the  wave  amplitudes 
IA;(x)l, / = 1, 2, 3, on Re = (UQx/v )m <*= xm for the wave triad 
consisting of a plane wave 1 of frequency co   and wave vector k:= (k, 
0) and oblique waves 2 and 3 of frequency co/2 and wave vectors k2 3 

= (fc1;±Ä:2) in the case when initial (at Re - 525) amplitudes IAi0l and 
phases 0liO satisfy the conditions:   \Al0\ » L420l   »IA30I, 01O = 02O + 03O. 
It was assumed here that F = cov/U0

2 = 115xl0"6 and K2 = vk2/U0 = 
0.18xlO"3; the values of A;   and kx   were  then  determined from  the 
Orr-Sommerfeld equations  (2.44)  and  (2.41)  which  showed  that k{ = 
k/2  [after Zel'man  and Maslennikova  (1993a)]. 
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Figure    5.4.  Treshold  amplitude A    of the plane T-S wave with 
streamwise   wavenumber   ^ in a Blasius boundary layer for the onset 
of  three-dimensionality   with   spanwise   wavenumber  k2   [after Massev 
(1968b)]. Curve 1: Re* = 1203, kl = 0.43; curve 2: Re* = 519,   kl = 
0.27. All the quantities are non-dimensionalized by scales  Ö*   and U0. 

Figure    5.5.  Examples of the amplitude  spectra Sü(f) 
(presented  in  lenear  scale)  of stream wise-velocity  fluctuations  u{t) in 
a  laboratory  flat-plate  boundary  layer  disturbed  by  a ribbon 
vibrating  with  frequency /0 = 2nco0. 

(a) Typical spectrum Su(f) measured by Kachanov, Kozlov and 
Levchenko  (1977)  [after Kachanov  (1994a)].  Peaks  denoted as fx,fm, 
3fm,2flt5fU2 and 3fx   correspond  to  frequencies f0,f0/2, 3fQ/2, 2f0, 
J/0/2 and 3f0. 

(b) Spectra Sa(f) measured inside a boundary layer at two 
values of the ribbon frequency /0 and coordinate x      (measured from 
the leading edge of a plate) but fixed values of y   and z : l./0 = 96.4 
Hz (F0 = 2Kfov/U0

2 = 109xl0-6), x = 600 mm (Re = (U0x/v)m = 608);   2. 
/„ = 111.4 Hz (F0 = 124x10"6), x = 640 mm (Re = 633) [after Kachanov 
and  Levchenko   (1984)]. 

Figure    5.6.  Dependence  of the  dimensionless  amplitudes A = 
u'/U0 of the primary plane wave (1) and subharmonic oblique waves 
(2) on the coordinate x   [and Re = (U0x/v)m] at y = -2.5 mm, z/8 = 
0.26 (where  8    is the boundary-layer thickness),  according to 
measurements   by   Kachanov   and  Levchenko   (1984). 

Figure    5.7.  Measured dependence of phases  <f>l  and <j>u2, and 
amplitudes   At andA1/2 of the primary plane wave (1) and 
subharmonic waves  (2)  on  the  spanwise coordinate y    [after 
Kachanov  and Levchenko  (1984)]. 

Figure    5.8.    (a) Regular system of A-vortices  typical for the 
K-regime  of disturbance  development in  a boundary  layer, 
(b) Staggered system of A-vortices typical for the N-regime of 
disturbance  development.   The  figures   show  flow   streaklines 
appearing when the disturbed flow is visualized by  smoke  [after 
Herbert  et al.   (1987)]. 
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Figure    5.9.    Spanwise distributions of phases  0  (a) and 
maximum (with respect to z) amplitudes A (b) for the primary plane 
wave of frequency /    (o) and subharmonic oblique waves of 
frequency f/2 (•) for the case 3 of Corke and Mangano's 
measurements   [after  Corke  and  Mangano  (1989)]. 

Figure     5.10.     Streamwise     developments  of maximum 
amplitudes  of streamwise velocity fluctuations  for (a)   subharmonic 
waves  of frequency f/2, and (b) primary waves  of frequency /  in the 
cases 1, 2, and 3    [after Corke and Mangano (1989)]. 

Figure     5.11.   Streamwise   development   of  maximum 
amplitudes of artificially exited plane wave of frequency 36 Hz and 
oblique wave of frequency  16 Hz,  together with development of the 
produced by their nonlinear interaction 3D wave of frequency 20 Hz 
[after Corke (1995)]. 

Figure     5.12.     Streamwise  development of a number of waves 
produced by  nonlinear interactions  of waves  from   'detuned 
resonance triad'  artificially excited by Corke  [after Corke (1995)]. 

Figure    5.13. Dependence of the amplification rate G0 = 
dA(x)/Adx   of the  oblique-wave  amplitude A = A2=A3 of a resonant 
wave triad on K2 = k2v/U0 (and k2/kx) for different values  of the 
plane wave amplitude A, [and F, = coxv/U0

2 = 115xl0-6, Re+ = 
(U0x/v)m  =  640].  All  dimensional  quantities  are non-dimensionalized 
by scales 5+= (vx/UQ)

m and U0. Curves 1, 2, ..., 6 correspond to A, = 
0.14, 0.21, 0.28, 0.40, 0.53, 0.72%, dotted line shows the dependence 
of optimal values (k2lkx)^ and (£2)pr on A!   [after Zel'man and 
Maslennikova  (1953a)   and  Kachanov  (1994a)]. 

Figure     5.14. Dependence of the the value of (k2lkx)vr 

corresponding  to  the most amplified oblique  subharmonics  of the 
plane wave on the plane-wave  amplitude Av   Experimental  points 
correspond to laboratory observations:   1  - of Kachanov and 
Levchenko (1982,1984); 2, 3 - of Saric et al. (1984); 4 - of Saric and 
Thomas  (1984)   [after Zel'man  and Maslennikova (1993a)  and 
Kachanov   (1994a)]. 
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Figure   5.15.  (a) Comparison of the measured by Corke and 
Mangano  (1989)  maximal  values Amax of the oblique-wave 
amplitudes   A2=A3 in three studied cases with the theoretical 
dependence  of Amax on k2/k{  which follows from the application to 
the   their  experiments  results   of  the   secondary-instability   theory 
developed  by  Herbert  (1983b,1988a)   and  Herbert  and  Bertolotti 
(1985)  [after Corke and Mangano (1989)]. 

(b) Comparison of the maximal oblique-wave growth rate Gmax 

observed by Corke and Mangano in three cases studied in their 
experiments with theoretical estimate of the dependence of Gmax on 
k2/k{  following  from  Mankbadi's  theory  of critical-layer  nonlinearity 
[after  Mankbadi   (1993a)]. 

(c) Comparison of Mankbadi's theoretical estimate of the 
dependence  of Gmax on k2/kl   with  the  corresponding  theoretical 
estimate  by  Herbert  (1988a)  and results  of numerical  simulation by 
Spalart and Yang  (1987)  of disturbance development in  a boundary 
layer with a vibtrating ribbon in it;    for F s cov/U0

2 = 58.8x10"5 and 
initial conditions   A,(0) = 1.4% and Re+(0) = 950 [after Mankbadi 
(1993a)]. 

Figure     5.16.  Measured {points) and calculated (curves) 
vertical profiles of the amplitude Am(z) (left)   and the phase (pv2(z) 
(right) of the subharmonic 3D wave of frequency co/2  resonantly 
amplified in the N-regime of instability development in a Blasius 
boundary  layer.  Experimental  data by  Kachanov  and  Levchenko 
(1982).  Calculations:   1   -  secondary-instability  theory  of Herbert 
(1984a); 2 - numerical simulation of Fasel et al. (1989); 3 - resonant- 
triad  theory  of Zel'man  and Maslennikova  (1989,1990,   1993a)   [after 
Kachanov   (1994a)]. 

Figure     5.17.   (a)  Resonant  streamwise  amplifications  of the 
plane  wave  amplitude Ax(x) (results  1, 2, 3) and of the amplitude 
Am(x)  of the two  subharmonic waves of twice  smaller frequency 
(results 4, 5, 6) during the initial stage of the N-regime of instability 
development.  Experimental data (points  1   and 4) by Kachanov and 
Levchenko (1982); calculations  (curves):  2 and 5  - Herbert's  (1884a) 
theory; 3 and 6 - numerical simulations by Fasel et al.    (1989). 

(b) and (c) The same resonant amplifications at more late 
stages of the N-regime when values of Am(x) (2, T and 5)    overtake 
those of Ax(x) (1, 1', 3 and 4); Re=(jtU/V)

m ~ x m.  (b):   expereimental 
data (points 1' and 2') by Saric et al. (1984),    calculated curves 1  and 
2 - theory by Maslennikova and Zel'man (1985) and Zel'man and 
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Maslennikova  (1993a);  dotted curve  3  -  theory taking non- 
parallelism into account,  (c):  experimental data (points 4 and 5) by 
Corke  and Mangano  (1989);  theoretical calculations  (curves) by 
Crouch and Herbert (1993)  [all figures after Kachanov (1994a)]. 

Figure  5.18.   Downstream-growth  curves   for  amplitudes   of 
five-wave  disturbance  system in  a Blasius  boundary layer.  The 
system includes the plane wave  1  of frequency co    and wave vector 
{k,  0}   and oblique-wave pairs 2-3  and 4-5  with frequency-wave 
vector values  {a/2, k{, ±k2} and {coll, kx*, ±&2*} where F = a>v/U0

2 = 
230xl0"6, K2 = k2v/U0 = O.nixlO"3, K2* = k2*v/U0 = 0.15xl03; Re = 
(U0x/v)112  [after Zel'man and Maslennikova (1993a)]. 

Figure     5.19.   Amplification   curves   for  seven-wave   system 
including the primary plane wave  0     with     frequency-wave vector 
(f-w)  combination   {co0, k, 0}, a pair of secondary oblique waves 1-2 
with    f-w combination  {co0/2, kx,±k2}  and two pairs of tertiary 
oblique waves 3-4 and 5-6 with f-w combinations  {co0/4, &,', ±k2 } 
and   {o)0/4, k{", ±k2"}. Here F0 = co0v/U0

2 = 122xl0"6, k2/kx =2, k2'/k^ = 
2.8, k2"/k" = 3.44, Re* = (U0d*/v)m [after Zel'man and Maslennikova 
(1993b)]. 

Figure    5.20.  Downstream  growth  of spanwise  modulation  of 
the  amplitude  u'     of streamwise disturbance velocity in a boundary 
layer disturbed  by  vibrating ribbon. 

o - data for x - 7.6 cm; A - for x = 15.2 cm; x - for x = 19cm, 
where x    is measured from the trailing edge of the ribbon; 1 - 
modulation 'peaks', 2 - 'valleys'  [after Klebanoff et al. (1962)]. 

Figure     5.21.  Typical single and double spikes in a boundary 
layer flows  [after Klebanoff et al. (1962)]. 1 - 1st spike; 2 - 2nd spike; 
T -  fundamental  period  of spike repetitions. 
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Figure     5.22.     Amplification of total intensity of streamwise 
disturbance   velocity   u(x,t)  and amplitudes of its harmonics with 
frequencies  a>v co2, ... , co6 (symbols and curvesl, 2, ... ,6; cox - 
fundamental frequency of primary T-S  wave,   con = ncox) observed at y 
corresponding to peak position of spanwise modulation,  fixed value 
of z    and variable x-coordinate.  Streamwise intervals  Is,  2s,  3s  - 
places of formation of the 1st, 2nd, and 3rd spike [after Kachanov et 
al.  (1984) and Kachanov (1994a)]. 

Figure     5.23. Vertical (left) and spanwise (right) profiles of 
the  amplitudes Ai (bottom) and phases 0t (top)   of   streamwise-velocity 
harmonics    with frequencies  co{, a>2, ... , col0  measured at the stage of 
developed spikes (curves 1, 2, ... , 10)    [after Borodulin and Kachanov 
(1992)  and Kachanov (1994a)].  Mean-velocity profile is  added to 
vertical   amplitude  profiles   to   show  the  boundary-layer  thickness. 

Figure     5.24.     Streamwise  development of values  of 
amplitudes  An m of  (n,ra)-Fourier components  of velocity  u(x,t)   at 
the heights z     where these  amplitudes  takes maximal values  [after 
Rist and Fasel (1995)]. 

(n,m)-Fourier   component   corresponds   to   frequency   coa=ncol  and 
spanwise   wavenumber   k2,m = mk0    (where cot   -   fundamental   frequency   of 
primary   wave,   k0   -   wavenumber   of  the   fundamental   spanwise   periodicity   (0,1) 
shown  in Fig.  5.21).  Symbols  (0,0)  and (1,0)  correspond to  amplitudes  of the 
'mean   flow   correction'   and   'primary   2D   wave'. 

Figure    5.25.    Two examples of A-vortices   appearing  at  two 
time instants  in  the  numerical  simulation  of unstability 
developments in a flat-plate boundary layer by Rist and Fasel. 
Shown   here   three-dimensional   A-shaped   structures   are  bounded  by 
surfaces  I77J = constant where 77 x   is the x -component of flow 
vorticity;  Ay is the primary spanwise wavelength clearly seen in Fig. 
5.20 [after Rist and Fasel (1995)]. 

Figure    5.26.    Comparison of 'spike signal' in the (u\ t, y)- 
space (u'    is the stremwise disturbance velocity measured in parts of 
U0)     appearing  in numerical  simulation of boundary-layer instability 
development by Rist and Kloker at x = 500 mm, z = 8 mm (a) with 
the  'spike signal'  observed at the same values of x   and z   in the 
corresponding  laboratory  experiment  of Kachanov  and  Borodulin  (b) 
[after Rist and Kachanov (1995)]. 



Figure    5.27.  (a) Dependence of the dimensionless height z/S 
(where   S     is the boundary-layer thickness) of the center of an 
appearing  spike  on  streamwise  coordinate x     during spike 
downstream  evolution,     (b) Dependence on x    of the streamwise 
velocity cs    of a spike [after Borodulin and Kachanov (1994)]. 

Figure    5.28. Schematic form of a family of Ryzhov's three- 
parameter soliton  solution of the  Benjamin-Ono  equation  (5.16) 
corresponding  to  various  values  of the  amplitude parameter A   and 
fixed values  of other two parameters  (determining scales  of the 

T 

dependence  of A   on t   and x). Here \ = T~x\A(t)dt   is the mean 
0 

amplitude,  A~, A+   and T0     are some numerical form characteristics 
and T    is fundamental spike period [after Kachanov, Ryzhov and 
Smith (1993)]. 

Figure     5.29.   Experimental  (points) and theoretical (curves) 
dependencies  of soliton form  characteristics A~, A+   and T0   on the 
soliton magnitude Am = (A+ + A')/2.  Theoretical  curves  correspond  to 
shown in Fig. 5.28  solution of B-O equation with appropriately chosen 
parameter values; points  - data of Borodulin and Kachanov (1988) 
[after Kachanov,  Ryzhov  and Smith (1993)]. 

Figure     5.30.    The dependence on t   of the growth curve G(t) 
for the energy of plane-wave disturbances  with kl = 1  [all physical 
quantities  are non-dimensionalized by  scales Hx = H/2 and U0 = 
U(H/2)] in a plane Poiseuille flow between walls at z = 0 and z = H. 
Here the curve labelled  'Unstable' corresponds to the  'optimal'  2D 
wave  having  the  greatest  transient  growth  in  the  linearly  unstable 
Poiseuille flow with Re = U0H/v = 8000, the 'Stable' curve 
corresponds to the optimal 2D wave in the linearly stable Poiseuille 
flow with Re = 5000, while 'Modal' curve shows the growth of the 
unstable  solution  of the  Orr-Sommerfeld  eigenvalue problem  with  k{ 

= 1 and Re = 8000. In all cases it is assumed that the initial energy at 
t = 0 is equal to 1  [after Reddy and Henningson (1993)]. 
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Figure     5.31. (a) The dependence of the energies £   of a 
number of (n,ra)-Fourier  components   [i.e.,   waves  with  frequencies 
and   spanwise  wavenumbers   (nco0,mk20)] on x    in a Blasius boundary 
layer with  a pair of oblique waves with frequencies and spanwise 
wavenumbers   (o)0,±k2,o)- (a) Dependence of E   on (x -x0)/ö*   in the 
case when the initial energy of (l,l)-mode is equal to  1  [after Berlin 
et al. (1994)].    (b) Dependence of E    (measured in some conventional 
units) on x    (in mm); coordinate xQ    of the 'wave generator' is here 
close to 186 mm [after Berlin et al.  (1999)]. 

Figure     5.32.   Computed  energy-growth  curves  for  a  number 
of (n,m)-waves   with   streamwise   and   spanwise   wavenumbers 
(nkl0,mk20)  in  a boundary  layer disturbed by   'primary  oblique 
waves'  with wavenumbers     (k10,±k2,o) and a 'weak noise'  consisting of 
supplementary   small-amplitude   (n,ra)-waves with n = 0, 1, 2, and m 
= 0,  1, 2 [after Schmid and Henningson (2000)]. 

Figure     5.33.  Dependence of the transition time T0   on the 
disturbance  initial  energy  E0 (which is proportional to A0

2) for three 
transiton scenarios:  i)   'oblique transition'  (labelled  'oblique waves'), 
ii)   'TS-wave-secondary-instability  scenario'   (K-regime,  labelled   'TS 
waves'),  and iii)   'streak-breakdown scenario'   (labelled  'vortices'  since 
streaks  are produced by  streamwise vortices).  The results  are for 
temporally growing Blasius boundary layer with initial Re* = 500 
[after Schmid et al.  (1996)]. 
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